АКТ
ТЕХНИЧЕСКОГО РАССЛЕДОВАНИЯ
ПРИЧИН АВАРИИ,
ПРОИСШЕДШЕЙ 17 АВГУСТА 2009 ГОДА
в филиале
Открытого Акционерного Общества
«РусГидро» - «Саяно-Шушенская ГЭС
имени П.С. Непорожнего»

2009 г.
А К Т
ТЕХНИЧЕСКОГО РАССЛЕДОВАНИЯ ПРИЧИН АВАРИИ,
ПРОИСШЕДШЕЙ 17 АВГУСТА 2009 ГОДА

1. Реквизиты организации

1.1 Предприятие: Филиал открытого акционерного общества «РусГидро»- «Саяно-Шушенская ГЭС имени П.С. Непорожнего» (далее - СШГЭС).

Код экономической деятельности: 40.10.12.
Юридический адрес: Российская Федерация, Красноярский край, г. Красноярск, ул. Республики, д. 51.
Фактический адрес: 655619, Российская Федерация, Республика Хакасия, г. Саяногорск, пгт. Черемушки, а/я 39.
ИНН: 2460066195;
КПП: 246001001;
БИК: 049514608;
к/с: 30101810500000000608.

Договор страхования гражданской ответственности организаций, эксплуатирующих опасные производственные объекты, за причинение вреда жизни, здоровью или имуществу третьих лиц и окружающей природной среде в результате аварии или инцидента на опасном производственном объекте с ОАО «АльфаСтрахование» от 16 декабря 2008 г. № 0361F/787/00017/8, страховой полис № 0361F/787/00017/8/1 на сумму 18 100 000, 00 руб.

Договор страхования гражданской ответственности эксплуатирующих организаций и собственников гидротехнических сооружений за причинение вреда жизни, здоровью и имуществу других лиц с ОАО «АльфаСтрахование» от 16 декабря 2008 г. № 0361F/792/00011/8, страховой полис № 0361F/792/00011/8/1 на сумму 60 000 000, 00 руб.
2. Состав комиссии технического расследования причин аварии

Председатель:
Кутын Н.Г. - руководитель Федеральной службы по экологическому, технологическому и атомному надзору.

Члены комиссии:
Слабиков Г.В. - заместитель председателя комиссии - руководитель Северо-Западного управления Федеральной службы по экологическому, технологическому и атомному надзору;
Ильин В.М. - заместитель руководителя Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;
Белобородов С.С. - Председатель НП «Совет рынка»;
Бережков В.Б. - заместитель начальника отдела энергетического надзора управления энергетического и строительного надзора Федеральной службы по экологическому, технологическому и атомному надзору;
Гордиенко В.М. - заместитель начальника управления энергетического и строительного надзора Федеральной службы по экологическому, технологическому и атомному надзору;
Грецкий С.В. - главный специалист государственного учреждения регионального отделения Фонда социального страхования РФ по Республике Хакасия;
Добрачев Н.М. - заместитель руководителя Государственной инспекции труда - заместитель главного государственного инспектора труда (по охране труда) в Республике Хакасия;
Дмитриев Ю.М. - помощник директора ФГУП «ВО Безопасность»;
Емелев В.М. - главный , государственный инспектор отдела по котлонадзору и надзору за ГТС Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;
Литвеков В.И. - заместитель начальника отдела энергонадзора по Республике Хакасия Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;
Меркушев А.Г. - начальник отдела Энергонадзора по Республике Хакасия Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;
Метелева Т.Г. - председатель профкома филиала ОАО «РусГидро» - «Саяно-Шушенская ГЭС им. П.С.Непорожнего»;
Никулин П.И. - начальник отдела горного надзора по Республике Хакасия Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;
Оглезнев А.Ф. - главный государственный инспектор отдела энергонадзора по Республике Хакасия Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;
Озерова Г.С. - главный государственный инспектор отдела по котлонадзору и надзору за ГТС Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;
Подсыванникова А.Н. - государственный инспектор отдела по надзору за химическими и нефтехимическими производствами Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;
Пронь В.А. - заместитель директора Центра страхования энергетических рисков ОАО СК «РОСНО»;
Ступин С.А. - заместитель руководителя Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;
Тихонов Е.Н. - главный государственный инспектор отдела технологического надзора по Республике Хакасия Енисейского управления Федеральной службы по экологическому, технологическому и атомному
надзору;

Федоренко А.П. - государственный инспектор отдела технологического надзора по Республике Хакасия Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;
Хазизахметов Р.М. - член правления ОАО «РусГидро», управляющий директор, руководитель Бизнес-единицы «Инжиниринг»;
Хныкин А.В. - начальник отдела по надзору за гидротехническими сооружениями управления энергетического и строительного надзора Федеральной службы по экологическому, технологическому и атомному надзору;
Ходосевич А.В. - и.о. руководителя Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;
Цапенко А.В. - заместитель начальника управления энергетического и строительного надзора Федеральной службы по экологическому, технологическому и атомному надзору;
Черединов Ю.А. - председатель профкома ОАО «Саяно-Шушенский гидроэнергопром»;
Яровицкий О.В. - заместитель начальника отдела Энергонадзора по Республике Хакасия Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;
Петреня Ю.К. – заместитель генерального директора-технический директор ОАО «Силовые машины»;
Ферапонтов А.В. – заместитель руководителя Федеральной службы по экологическому, технологическому и атомному надзору.
Глоссарий

АВРЗ – аварийно-ремонтный затвор
АРЧМ – автоматическое регулирование режима энергосистем по частоте и перетокам мощности
АСУ ТП – автоматизированная система управления технологическими процессами
БГЭС – Братская гидроэлектростанция
ВО – внутренний осмотр
ГА – гидроагрегат
ГИ – гидравлические испытания
ГП – генераторный подшипник
ГРАМ – групповой регулятор активной мощности
ГРАРМ – групповой регулятор активной и реактивной мощности
ГЭС – гидроэлектростанция
ДД – дежурный диспетчер
ЗВМ – задатчик внеплановой мощности
КАЗ – клапан аварийного закрытия
КЗ – короткое замыкание
МНУ – маслонапорная установка
НА – направляющий аппарат
НПР – насос с пневмоприводом
НПУ – нормальный подпорный уровень
НСС – начальник смены станции
НТД – нормативно-техническая документация
ОДУ – оперативно-диспетчерское управление
ОИК – оперативно-информационный комплекс
ОПО – опасный производственный объект
ОРУ – открытое распределительное устройство
ОС – оперативная служба
ОТ- отсасывающая труба
ОЭС – объединенная энергетическая система
ПК – пожарная команда
ПТЭЭСиСРФ - Правила технической эксплуатации электрических станций и сетей Российской Федерации, утвержденных приказом Министерства энергетики Российской Федерации от 19 июня 2003 г. № 229
РВД – редуктор высокого давления
РК – рабочее колесо
СМГТС – служба мониторинга гидротехнических сооружений
СМО – служба мониторинга оборудования
СНТБ – служба надежности и техники безопасности
СТСУ – служба технологических систем управления
СШГЭР – ОАО «Саяно - Шушенский Гидроэнергогоремонт» (до июля 2009 г. ЗАО «Гидроэнергогоремонт»)
СШГЭС – «Саяно-Шушенская ГЭС имени П.С. Непорожнего»
ТВС – техническое водоснабжение
ТП – турбинный подшипник
УРОВ – устройство резервирования отказа выключателя
ЦЛАЗ – центральный линейный аппарат зала
ЦПУ – центральный пульт управления
ЦС – централизованная система
ЭВМ – электронно-вычислительная машина
ЭГК - Электрогидравлическая колонка
ЭГР – электрогидравлический регулятор
ЭКМ – электроконтактный манометр
3. Характеристика объекта и места аварии

В состав Саяно-Шушенской ГЭС входит бетонная арочногравитационная плотина цилиндрической формы с радиусом по верхней грани 600 м, максимальной высотой 242 м, длинной по гребню 1074, 4 м и шириной 25 м, состоящая из водосбросной, стационарной и глухих частей. Осуществляется строительство нового объекта «Береговой водосброс».

Водосбросная часть плотины длиной 189,6 м имеет 11 водосбросных отверстий с размерами расчетного сечения 8,2×5,4 м с заглубленными водозаборами, пороги которых ниже на 61 м относительно проектного нормального подпорного уровня (НПУ отм. 539 м). Отверстия перекрыты плоскими колесными затворами, обслуживаемыми двумя козловыми кранами грузоподъемностью по 500 т.с. каждый.

Здание ГЭС - криволинейное в плане с радиусом по оси агрегатов 452 м, длиной вместе с монтажной площадкой 289 м, расположенное у стационарной части плотины в левобережной части русла, состоящее из 10 агрегатных блоков шириной по оси агрегатов 23,82 м, торцевого блока шириной 34,6 м и монтажной площадки длиной 40 м, к которой со стороны нижнего бьефа примыкают служебно-технологические и административные корпуса А и Б.

«Основное назначение СШГЭС в комплексе с Майнской ГЭС - выработка электроэнергии с недельным и неограниченным суточным регулированием» (проект «Саяно-Шушенский гидроузел на реке Енисей». Сводная записка. Ленинград, 1988г., стр. 10).
«Саяно-Шушенский гидроэнергетический комплекс» в энергообъединении выполняет следующие функции:

- выдача в систему активной и реактивной мощности и энергии;
- частотного резерва мощности и аварийного резерва системы;
- обеспечение безопасности населения в соответствии с Декларацией безопасности гидротехнических сооружений Саяно-Шушенской ГЭС и Майнского гидроузла» (Акт приемки в эксплуатацию законченного строительством Саяно-Шушенского гидроэнергетического комплекса на реке Енисей, п. Черемушки, 2000 г.) (далее - Акт приемки).
Рис.3.2. Разрез плотины и машинного зала СШГЭС

«Водохранилище Саяно-Шушенской ГЭС осуществляет суточное, недельное и годичное регулирование стока в интересах энергосистемы с учетом интересов других участников водопользования» (Акт приемки в эксплуатацию законченного строительством Саяно-Шушенского гидроэнергетического комплекса на реке Енисей, п. Черемушки, 2000 г., стр. 13).
Рис.3.3. Разрез плотины и машинного зала СШГЭС

Перечень утвержденной проектной документации приведен в таблице:

<table>
<thead>
<tr>
<th>№ п./п.</th>
<th>Наименование документа</th>
<th>Год утверждения</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Проектное задание</td>
<td>1965</td>
</tr>
<tr>
<td>2</td>
<td>Технический проект</td>
<td>1970</td>
</tr>
<tr>
<td>3</td>
<td>Уточненное проектное задание</td>
<td>1976</td>
</tr>
<tr>
<td>4</td>
<td>Пусковой комплекс гидроагрегата №1, инв. № 1047-1-26п</td>
<td>1977</td>
</tr>
<tr>
<td>5</td>
<td>Пусковой комплекс гидроагрегатов №2 и №3, инв. № 1047-1-34п и № 1047-1-35п</td>
<td>1978</td>
</tr>
<tr>
<td>6</td>
<td>Пусковой комплекс гидроагрегатов №4 и №5, инв. № 1047-1-40п</td>
<td>1980</td>
</tr>
<tr>
<td>7</td>
<td>Пусковой комплекс гидроагрегата №6, инв. № 1047-1-47п</td>
<td>1981</td>
</tr>
<tr>
<td>8</td>
<td>Пусковой комплекс гидроагрегатов №7 и №8, инв. № 1047-1-55п</td>
<td>1983</td>
</tr>
<tr>
<td>9</td>
<td>Пусковой комплекс гидроагрегатов №9 и №10, инв. № 1047-1-56п</td>
<td>1984</td>
</tr>
</tbody>
</table>

В здании гидроэлектростанции установлены 10 гидроагрегатов (далее - ГА) с синхронными гидрогенераторами зонтичного типа СВФ 1285/275-42УХЛ4 номинальной мощностью 640 мВт, имеющими опору на крыше турбины, водяное охлаждение статора и форсированное воздушное охлаждение ротора (завод-изготовитель «Электросила») и радиально-осевыми гидротурбинами - РО-230/833-В-677, имеющими диаметр рабочего колеса 6,77 м (завод-изготовитель ПО «Ленинградский металлический завод» (ЛМЗ)).
Напряжение генераторов - 15,75 кВ. При испытаниях гидрогенератор развивал и устойчиво нес нагрузку 720 МВт.

Общая пропускная способность турбин 3400–3600 м³/с. Расчетный напор воды на турбины 194 м, минимальный – 176 м.

Установленная мощность станции 6400 МВт.

На момент сдачи СШГЭС имелись ограничения пиковой мощности до 4000 МВт по предельной пропускной способности существующих линий электропередач.

Ввод в эксплуатацию гидроагрегатов СШГЭС осуществлялся в следующем порядке:

ГА-1 - 01.12.1978;
ГА-2 - 05.11.1979;
ГА-3 - 01.12.1979;
ГА-4 - 01.10.1980;
ГА-5 - 01.12.1980;
ГА-6 - 01.11.1981;
ГА-7 - 01.09.1984;
ГА-8 - 01.11.1984;
ГА-9 - 01.12.1985;

ГА- 1 и ГА – 2 вводились в эксплуатацию с временными рабочими колесами.

07.11.1986 г. ГА - 2 и 12.06.1987 г. ГА – 1 введены в работу со штатными рабочими колесами.
Срок эксплуатации гидротурбин - 30 лет (формуляр 2244 000 ФО Ленинградского металлического завода).
Срок эксплуатации гидрогенератора - 40 лет (ГОСТ 5616 - 89).

Рис.3.4 Турбинная установка с радиально-осевой турбиной Саяно-Шушенской ГЭС
а) водоприемник; б) рабочее колесо; в) сороудерживающая решетка; г) здание ГЭС с водоводом, спиральной камерой, агрегатом и отсасывающей трубой.

Турбинная установка состоит из водоприемника оборудованного сороудерживающей решеткой (2) и трубой впуска воздуха (1). Турбинный водовод (6) имеет перед входом назы для установки ремонтных затворов (3). Для защиты турбины в случае отказа направляющего аппарата имеются специальные пазы, где установлены быстропадающие затворы (4) (аварийные), которые опускаются от действия автоматических устройств, контролирующих недопустимое повышение частоты вращения агрегата.
Быстропадающий затвор приводится в действие гидроподъемником (5). Для ремонта всего гидромеханического оборудования водоприемников предусмотрены специальные козловые краны (7).

Рабочее колесо турбины располагается в камере (8) и состоит из трех жестко связанных частей - обода (9), ступицы (10), между которыми располагаются лопасти (9) сложной пространственной формы.

Рис. 3.6 Внешний вид строящейся спиральной камеры гидроагрегата №-2 в период монтажа

Проектом СШГЭС предусмотрены следующие защиты гидроагрегатов:

Основные защиты:
- продольная дифференциальная защита;
- поперечная дифференциальная защита;
- защита от замыкания на землю обмотки статора;
- защита от повышения напряжения;
- защита от асинхронного хода;
- дополнительная максимальная токовая защита;
- защита от потери возбуждения;
- защита от замыкания на землю обмотки ротора главного генератора;
- защита ротора от перегрузки;
- дифференциальная защита вспомогательного генератора;
- защита вспомогательного генератора от перегрузки;
- защита от максимального тока ротора вспомогательного генератора;
- максимальная токовая защита вспомогательного генератора;
- защита от повышения напряжения статора вспомогательного генератора;
- защита ротора вспомогательного генератора от замыканий на землю.
Резервные защиты:

- защита от перегрузки ротора при неуспешном действии автоматического регулятора возбуждения;
- защита ротора от перегрузки;
- токовая защита обратной последовательности от короткого замыкания (КЗ) и перегрузки;
- токовая защита от симметричных КЗ и перегрузки;
- дистанционная защита от симметричных КЗ (только для Г8);
- защита от перегрузки статора;
- устройство резервирования отказа выключателя (УРОВ).

Гидромеханические защиты, действующие на отключение гидроагрегата:

- аварийное повышение температуры сегментов генераторного подшипника;
- аварийное повышение температуры сегментов подпятника;
- аварийно-низкое давление в аккумуляторе маслонапорной установки (МНУ);
- аварийно-низкий уровень масла в аккумуляторе МНУ;
- аварийно-низкий расход технической воды на смазку подшипника турбины;
- обрыв троса обратной связи положения направляющего аппарата (НА) в электрогидравлическом регуляторе (ЭГР);
- неисправность регулятора;
- защита от разгона 1 ступени;
- защита от разгона 2 ступени;
- защита от снижения расхода дистиллята охлаждения статора.
Разрешительные документы

СШГЭС имеет следующую разрешительную документацию:

Лицензии:

1. На эксплуатацию взрывопожароопасных производственных объектов, № ВП-00-0097772(КХ) (25.03.2009г. – 25.03.2014г.) Ростехнадзор;
2. На право пользования недрами, строительство и эксплуатация берегового водосброса СШГЭС на правом берегу р. Енисей, № КРР 01950 ПГ (25.09.2008г. - 30.12.2030г.) Управление по недропользованию по Красноярскому краю;
3. На строительство и эксплуатацию подземных сооружений не связанных с добычей полезных ископаемых (автодорожный тоннель с объектом 05 гражданской обороны и дренажно-цементационными штолнями) на левом берегу р. Енисей, № АБН 00489 ПГ (28.11.2008г. - 28.03.2033г.) Управление по недропользованию по республике Хакасия;
4. На ремонт средств измерений № 004289-Р (24.01.2008г. - 24.01.2013г.) Федеральное агентство по техническому регулированию;
5. На деятельность по сбору, использованию, обезвреживанию, транспортировке, размещению опасных отходов, № ОТ-65-000118(19) (12.08.2008г. - 12.08.2013г.) Ростехнадзор;
7. На производство работ по монтажу, ремонту и обслуживанию средств обеспечения пожарной безопасности зданий и сооружений, № 2/27931 (01.11.2008г. - 01.11.2013г.) МЧС России.
Разрешения:

- на эксплуатацию гидротехнических сооружений (комплекса гидротехнических сооружений) СШГЭС, от 3 марта 2009 г. № 541 (ГЭС), на основании Декларации безопасности гидротехнических сооружений СШГЭС от 2 марта 2009 г. № 08-09(01)0012-1-10-2ЭС.

Комиссия отмечает, что в настоящий момент действующее законодательство не предусматривает получения хозяйствующими субъектами лицензий на эксплуатацию, проведение ремонтных и восстановительных работ в отношении оборудования гидроэлектростанций (включая гидроагрегаты).

Оперативное управление, организация эксплуатации и ремонта гидротехнических сооружений, оборудования, зданий и сооружений осуществляется следующими службами, структурными подразделениями СШГЭС:
- оперативная служба (ОС);
- производственно-техническая служба;
- служба подготовки и сопровождения ремонтов;
- служба технологических систем управления (СТСУ);
- участок эксплуатации;
- отдел комплексных информационных систем;
- служба надежности и техники безопасности (СНТБ);
Ремонт, техническое обслуживание и эксплуатацию гидротехнических сооружений, оборудования, зданий и сооружений осуществляется следующими службами, структурными подразделениями СШГЭС и подрядными организациями:
- служба технологических систем управления (СТСУ);
- отдел комплексных информационных систем;
- ОАО «Саяно - Шушенский Гидроэнергоремонт» (ОАО «СШГЭР») (до мая 2009г. ЗАО «Гидроэнергоремонт»).

Контроль состояния оборудования, гидротехнических сооружений СШГЭС, зданий и сооружений осуществляют:
- служба мониторинга оборудования (СМО);
- служба мониторинга гидротехнических сооружений (СМГТС).

Авторский надзор на объектах нового строительства СШГЭС осуществляется на основании:
- договора № 11/2 от 22.12.2008 по ведению авторского надзора на объектах СШГЭС в соответствии с техническим заданием по новому строительству и программе ремонтов (ООО «Комплексная изыскательская экспедиция № 13»);
- договора на авторский надзор № 12\102\2006-095 от 03.03.2006 по объекту нового строительства «Береговой водосброс» (ООО «Комплексная изыскательская экспедиция № 13»).

Порядок организации работ и допуска командированного персонала СШГЭС определен приказами по СШГЭС:
- приказ от 25.11.2008 № 206 «О допуске командированного персонала
- приказ от 20.11.2008 № 204 «О вводе в действие временного положения «О допуске персонала строительно-монтажных организаций к выполнению работ на объектах СШГЭС на правах СМО».
Под надзором Енисейского управления Ростехнадзора находятся шесть эксплуатируемых опасных производственных объектов (ОПО):

1. Площадка ГЭС филиала ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего»;

2. Площадка ОРУ-500 филиала ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего»;

3. Площадка Майнского гидроузла филиала ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего»;

4. Производственная площадка Базы грузовых и складских операций филиала ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего»;

5. Площадка трансформаторной подстанции филиала ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего»;

6. Площадка трансформаторной подстанции филиала ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего» Майнского гидроузла,

на которых находятся 25 воздухосборников, 13 сосудов воздушных, 13 сосудов масловоздушных, 24 баллона, а так же на указанных площадках расположено 8 кранов, 15 лифтов и 22 трансформатора.

Кроме этого ведется надзор за соблюдением требований промышленной безопасности при ведении горных работ на строительстве берегового водосброса.
4. События, предшествующие аварии, включая технические и организационные причины

4.1 Нарушения в работе и повреждение узлов ГА-2 до введения в эксплуатацию Саяно-Шушенского гидроэнергетического комплекса

В период первоначальной эксплуатации гидротурбин было выявлено значительное число существенных случаев в нарушении и отказах в работе.

Отказы турбинного оборудования в период его доводки и освоения приведены в таблице:

<table>
<thead>
<tr>
<th>Дата</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.03.80</td>
<td>Увеличение боя вала до 1,3 мм, большие протечки воды через уплотнение ТП (трещины на облицовке вала, вырывы резины на сегментах, повреждение верхнего и нижнего уплотнений турбинного подшипника) - гидравлический небаланс сменного РК (рабочее колесо).</td>
</tr>
<tr>
<td>24.04.80</td>
<td>Течь масла на напорном трубопроводе системы регулирования в месте врезки трубопровода от насосов МНУ в напорный трубопровод через трещину, образовавшуюся в результате непровара сварного шва на напорном трубопроводе.</td>
</tr>
<tr>
<td>28.06.80</td>
<td>То же</td>
</tr>
<tr>
<td>1.08.80</td>
<td>Увеличение протечек воды через верхнее уплотнение ТП - стыки резинового кольца разошлись из-за некачественной склейки на заводе.</td>
</tr>
<tr>
<td>8.09.80</td>
<td>То же</td>
</tr>
<tr>
<td>13.09.81</td>
<td>Повреждение резиновой поверхности и болтов крепления сухарей сегментов турбинного подшипника, разрушение нижнего неподвижного кольца лабиринтного управления рабочего колеса. Обрыв конуса РК.</td>
</tr>
<tr>
<td>2.10.81</td>
<td>Увеличение боя вала от 1,9 м (увеличение зазора до 1,7 мм между сегментами подшипника и облицовкой вала).</td>
</tr>
<tr>
<td>29.11.81</td>
<td>Увеличение боя вала до 1,5 мм – обрыв болтов крепления сухарей сегментов - из-за гидравлического небаланса рабочего колеса.</td>
</tr>
</tbody>
</table>

22
<table>
<thead>
<tr>
<th>Дата</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.12.81</td>
<td>То же бой до 2 мм</td>
</tr>
<tr>
<td>18.01.82</td>
<td>То же бой до 2 мм – отслоение резины на сегментах № 7, 11, обрыв шпилек крепления корпуса ТП, повреждение облицовки вала.</td>
</tr>
<tr>
<td>25.01.82</td>
<td>Увеличение боя до 1,9 мм (увеличение зазора, повреждение облицовки вала, повреждение поверхности резины сегментов).</td>
</tr>
<tr>
<td>1.02.82</td>
<td>То же</td>
</tr>
<tr>
<td>24.03.82</td>
<td>Увеличение боя вала до 0,95 мм и повышенная вибрация корпуса ТП. Обрыв 2-х шпилек крепления корпуса подшипника к крышке турбины - гидравлический небаланс РК.</td>
</tr>
<tr>
<td>3.05.82</td>
<td>Увеличение боя до 1,9 мм (обрыв шпилек крепления корпуса ТП, увеличение зазора до 1,85 мм).</td>
</tr>
<tr>
<td>14.05.82</td>
<td>Увеличение боя до 1,5 мм (смещение корпуса ТП до 1 мм, трещина на обл. вала, обрыв шпилек).</td>
</tr>
<tr>
<td>28.05.82</td>
<td>То же</td>
</tr>
<tr>
<td>26.06.82</td>
<td>То же</td>
</tr>
<tr>
<td>9.07.82</td>
<td>То же</td>
</tr>
<tr>
<td>3.09.82</td>
<td>То же, бой до 1,6 мм</td>
</tr>
<tr>
<td>8.09.82</td>
<td>Повреждение резинового покрытия сегментов. Повышенный бой вала из-за гидравлического небаланса РК.</td>
</tr>
<tr>
<td>1.10.82</td>
<td>Обрыв корпуса РК.</td>
</tr>
<tr>
<td>27.10.82</td>
<td>Течь масла на напорном трубопроводе подачи масла от насосов МНУ в месте соединения с напорным трубопроводом сервомоторов направляющего аппарата.</td>
</tr>
<tr>
<td>10.11.82</td>
<td>То же</td>
</tr>
<tr>
<td>28.11.82</td>
<td>Увеличение боя вала до 1,6 мм – гидравлический небаланс РК.</td>
</tr>
<tr>
<td>23.01.83</td>
<td>Увеличение боя вала до 1,6 мм – гидравлический небаланс РК.</td>
</tr>
<tr>
<td>10.03.83</td>
<td>То же</td>
</tr>
<tr>
<td>24.03.83</td>
<td>Обрыв крепления корпуса ТП. Вибрация корпуса ТП до 0,7-0,6 мм при бое вала 0,95 мм в результате гидравлического небаланса РК.</td>
</tr>
<tr>
<td>27.07.83</td>
<td>Трещина корпуса ТП, появившаяся при увеличении вибрации корпуса ТП до 0,4 мм при бое вала 1,4 мм, большие</td>
</tr>
</tbody>
</table>
протечки воды на крышку турбины, обрыв косынок дополнительного крепления корпуса к крышке турбины - гидравлический небаланс РК.

18.08.83 Обрыв косынок дополнительного крепления корпуса турбинного подшипника. Вибрация корпуса ТП до 0,65 мм при бое вала 1,3 мм из-за гидравлического небаланса РК.

30.11.87 Снижение давления воды в левой нитке ТВС до 0, из-за разрыва по сварному шву заглушки, установленной на трубопроводе Ду 400 насосного варианта запитки системы ТВС. Некачественная сварка заглушки, выполненная монтажной организацией.

27.09.87 Течь масла по сварному шву напорного маслопровода индивидуального сервомотора № 13 из-за некачественного проведения сварного соединения монтажной организацией.

25.07.88 То же, индивидуального сервомотора № 11.

Капитальный ремонт ГА-2 с полной его разборкой проводился в период с 27.03.2000 г. по 12.11.2000 г. (Акт на приемку из капитального ремонта гидроагрегата ст. № 2 СШГЭС от 20.12.2000 г.).

При капитальном ремонте рабочего колеса были обнаружены:
- кавитационные разрушения тыльной стороны лопастей в районе входной кромки глубиной до 12 мм;
- трещины в верхней части выходной кромки лопасти № 1 длиной 130 мм, лопасти № 7 - 100 мм.

В частности, выполнены следующие работы:
- трещины разделаны РВД, зачищены, заварены электродами ЭА-395, зашлифованы по профилю;
- кавитационные разрушения лопастей РК не устранялись;
- центровка агрегата по лабиринтным уплотнениям после сборки ГА, формуляры № 6, 7.

При капитальном ремонте турбинного подшипника ТП были обнаружены:
- износ резинового покрытия сегментов;
- сквозные трещины в опорных плитах сегментов;
- износ воротниковых уплотнений, крепежных деталей.

В частности, выполнены следующие работы:
- чистка ванны, крышки ванны, деталей распорных узлов, деталей крепления воротниковых уплотнений от ржавчины, окраска нитрогрунтовкой на 2 слоя;
- изготовление и замена верхнего и двух нижних манжетных уплотнений;
- восстановление наплавкой, шлифовкой 16 пар распорных клиньев ванны ТП;
- сборка подшипника;
- выставлены нулевые зазоры.

При капитальном ремонте вала турбины была обнаружена выработка рубашки вала от верхнего воротникового уплотнения высотой 47 мм, глубиной 4 мм по всему диаметру вала (S=0,33 кв. м) и выполнены наплавка, шлифовка рубашки вала с контролем поверхности по лекальной линейке.

При капитальном ремонте крышки турбины были выполнены следующие работы:
- чистка и окраска подводных поверхностей крышки турбины;
- чистка опорного фланца и посадочных мест корпуса ТП.

Капитальный ремонт ГА-2 выполнен в соответствии с инструкцией по монтажу гидротурбинного оборудования 2244000 ИМ ПО ЛМЗ и инструкцией по монтажу гидрогенератора ОБС.412.033 ИМ ЛПО «Электросила».
4.2 Прием в эксплуатацию законченного строительством Саяно-Шушенского гидроэнергетического комплекса на р. Енисей в 2000 году

Приказом РАО «ЕЭС России» от 11.05.2000 № 253 «О назначении Центральной комиссии по приемке в эксплуатацию Саяно-Шушенского гидроэнергетического комплекса» была назначена Центральная комиссия в следующем составе:

Дьяков А.Ф. - председатель научно-технического совета РАО «ЕЭС России», доктор технических наук, профессор, член-корреспондент Российской академии наук (председатель комиссии);

Васильев Ю.С. - президент Санкт-Петербургского Государственного технического университета, доктор технических наук, профессор, член-корреспондент Российской академии наук (по согласованию), заместитель Председателя комиссии;

Брэзгалов В.И. - генеральный директор ОАО «Саяно-Шушенская ГЭС», доктор технический наук (заместитель председателя);

Абдулов Р.Х. - технический директор ОАО высоковольтного оборудования «Электроаппарат» (по согласованию);

Александров М.Г. - главный инженер проекта Майнского гидроузла ОАО «Ленгидропроект»;

Билев Е.А. - генеральный директор ОАО «Трест Гидромонтаж»;

Ботвинов Б.Г. - главный инженер проекта Саяно-Шушенской ГЭС ОАО «Ленгидропроект»;

Вишневецкий И.И. - председатель комитета по экологии и природопользованию Республики Хакасия (по согласованию);

Глебов И.А. - академик Российской академии наук (по согласованию);

Ефименко А.И. - главный государственный инспектор ГУ «Ленгосэнергонадзор» Минтопэнерго России (по согласованию);

Иващенков Д.А. - генеральный директор ОАО «ВНИИГ
им. Б.Е. Веденеева», доктор технических наук, профессор;

Ковалев Н.Н. - член-корреспондент Российской академии наук (по согласованию);

Коган Ф.Г. - главный специалист по производству ОАО «Гидроэлектромонтаж»;

Комелягин И.П. – генеральный директор Холдинговой компании «Красноярскэнергострой»;

Козлов А.В. - главный государственный санитарный врач по Республике Хакасия (по согласованию);

Кузьмин В.А. - заместитель Министра по ЧС и ГО Республики Хакасии (по согласованию);

Кузнецов В.А. - первый заместитель начальника Департамента электрических станций РАО «ЕЭС России»;

Лебедь А.И. - Председатель Правительства Республики Хакасия (по согласованию);

Лохматиков Г.П. - генеральный директор ОАО «Специэнергомонтаж», член-корреспондент инженерной академии Российской Федерации;

Мамаев А.И. - начальник управления Государственной противопожарной службы МВД Республики Хакасии (по согласованию);

Малышев Л.И. - советник генерального директора института «Гидроспеципроект», доктор технических наук;

Мамиконянц Л.Г. - ученый секретарь АООТ «ВНИИЭ», доктор технических наук, профессор, почетный академик Академии электротехнических наук;

Милицын А.П. - заместитель начальника управления Енисейского округа Госгортехнадзора России (по согласованию);

Мохов Н.Т. - начальник федерального государственного учреждения «Управления эксплуатации Саянских водохранилищ» Министерства природных ресурсов Российской Федерации (по согласованию);
Новожилов И.А. - руководитель департамента электроэнергетики Минтопэнерго России (по согласованию);
Новиков Н.Ф. - старший научный сотрудник ОАО «ВНИИГ им. Б.Е. Веденеева»;
Ооржак Ш.Д. - Президент Республики, Председатель Правительства Республики Тыва (по согласованию);
Пинский Г.Б. - главный конструктор по гидрогенераторам ОАО «Электросила» (по согласованию);
Смирнов Е.А. - заместитель Председателя Федерации профсоюзов Республики Хакасия (по согласованию);
Сотников А.А. - начальник СКБ «Гидротурбомаш», главный конструктор, кандидат технических наук (по согласованию);
Стаянловский В.А. - главный инженер - технический директор ОАО «Саяно-Шушенская ГЭС»;
Уланов А. И. - главный государственный инспектор труда по Республике Хакасия (по согласованию);
Федоров М.П. - первый вице-президент Санкт-Петербургского Государственного технического университета, доктор технических наук, профессор (по согласованию);
Хмельков А. Е. - начальник Енисейского бассейнового водохозяйственного управления Министерства природных ресурсов Российской Федерации (по согласованию);
Храпков А. А. - главный научный сотрудник ОАО «ВНИИГ им. Б.Е. Веденеева», доктор технических наук, профессор;
Юркевич Б.Н. - главный инженер ОАО «Ленгидпроект».
Приказом РАО «ЕЭС России» от 13.06.2000 № 329 в состав комиссии дополнительно включены:
Якимов А.М. - заместитель главы администрации Красноярского края (по согласованию);
Кельберг В.Г. - и.о. председателя комитета по экологии и природопользованию Красноярского края (по согласованию).

ОАО «Саяно-Шушенская ГЭС» РАО «ЕЭС России» на основании приказа РАО «ЕЭС России» от 11.05.2000г. № 253 был представлен Центральной комиссии по приемке в эксплуатацию Саяно-Шушенской ГЭС следующий перечень объектов:

1. Гидротехнические сооружения СШГЭС (глухие левобережная и правобережная части арочно-гравитационной плотины; водосбросная часть плотины с водобойным колодцем; стационарная часть плотины). Гидротехнические сооружения МГУ (бетонная водосбросная плотина, земляные правобережная, руслообразующая и левобережная плотины).

2. Силовые здания обеих ГЭС с монтажными площадками. Кабельными коммуникациями, устройствами управления и связи, а также подсобными помещениями.

3. Оборудование обеих ГЭС (гидроагрегаты, трансформаторы всех назначений, высоковольтное общестанционное и вспомогательное оборудование затворы, сороудерживающие решетки).

4. ОРУ-500 кВ со щитовым блоком, мастерской ремонта высоковольтного оборудования (МРВО) и компрессорной, ОРУ-220 кВ и ОРУ-35 кВ (строительные конструкции, ошиновка, переходы ВЛ, кабельные тоннели с системой пожаротушения, опоры и порталы, ограждения, охранные сигнализация и связь обеих ГЭС).

5. Трансформаторная мастерская СШГЭС.

6. Задания подсобно-вспомогательного и управленческого назначений СШГЭС (служебно-технологическое корпуса А и Б, пожарное депо, хоздвор, караульные помещения средства охраны). Служебно-технологический корпус МГУ.
7. Объект 05 Гражданской обороны СШГЭС с эксплуатационным проездным тоннелем от ОРГ-500 до гребня плотины.
8. Наружные сети хозяйственного и противопожарного водопровода хозяйственно-бытовой и ливневой канализации обеих ГЭС.
9. Территория обоих гидроузлов
10. Водохранилища и нижний бьеф.
11. Объекты жилья и соцкультбыта п. Черемушки.
12. Бетонное хозяйство.

В заключении к акту было отмечено:
«Все энергетическое, высоковольтное оборудование и другая аппаратура изготовлены отечественной промышленностью. На Саяно-Шушенской ГЭС такое оборудование, как гидротурбины, гидрогенераторы являются головными агрегатами и находятся на уровне лучших мировых образцов, а по некоторым электромеханическим параметрам превосходят их.
Всесторонние испытания и глубокие исследования гидрогенераторов и гидротурбин Саяно-Шушенской ГЭС подтвердили, что они имеют достаточный запас мощности и при необходимости могут длительно нести нагрузку 720 МВт. Номинальная мощность агрегата 640 МВт.
В первоначальный период эксплуатации Саяно-Шушенской ГЭС были выявлены некоторые конструктивные недостатки отдельных узлов гидротурбин, которые силами специалистов эксплуатации и заводоизготовителей частично устранены. Работа по повышению надежности отдельных узлов гидроагрегатов продолжается и в настоящее время, в частности, по ликвидации трещин на лопастях рабочих колес турбин. На Майском ГУ, из-за недостаточной надежности материала подшипников узлов механизма разворота лопастей и отклонений от проекта при их изготовлении, турбины работают в пропеллерном
режиме, что ухудшило их эксплуатационные характеристики и контргерирующего гидроузла в целом. Требуется замена турбин» (стр.29-30).

«В процессе освоения гидрокомплекса было выявлено, что в напорной грани и скальном основании плотины Саяно-Шушенской ГЭС происходят негативные процессы, связанные с нарушением плотности бетона и разуплотнением скального основания в масштабах, существенно превышающих проектные предположения.

Службой эксплуатации с привлечением специализированных организаций успешно выполнены работы по ликвидации нарушений сплошности в растянутой зоне напорной грани плотины, впервые в отечественной практике, и работы по укреплению основания, не имеющие аналогов в мировой практике.

Во избежание повреждения отремонтированной зоны тела плотины было обоснованно принято снижение НПУ на 1 метр» (стр.31).

«6. ОАО «Саяно-Шушенская ГЭС» обеспечить:

6.1. Завершение работ (приложение № 6) по Саяно-Шушенскому гидрокомплексу согласно пунктам 16, 17 констатирующей части настоящего акта с включением затрат в тариф на электроэнергию отпускаемую гидростанциями на ФОРЭМ (приложение № 13). При этом в кратчайшие сроки приступить к работам по строительству дополнительного водосброса на Саяно-Шушенской ГЭС» (стр.34). Примечание – в связи с непринятием своевременных административных и управленческих решений строительство дополнительного берегового водосброса не завершено до сих пор.
В приложении №12 к Акту Центральной комиссии по приемке в эксплуатацию Саяно-Шушенского гидроэнергетического комплекса «Мероприятия по повышению надежности и долгосрочной программе, разработанные ОАО «Ленгидропроект» 2000г», в частности указывается:

«К существенным недостаткам организации возведения гидротехнических сооружений СШГЭС следует отнести то, что генеральная схема строительства не была окончательно принята до разворота работ и претерпевала по объективным и субъективным причинам изменения в разгар строительства (транспортная схема подачи бетона, терморегулирование бетонной смеси, несвоевременное омоноличивание швов), что стало причиной ряда негативных последствий (инцидентов), которые устранялись в период эксплуатации. Основными из которых явились трешинообразование в первых столбах плотины, разуплотнение основания и разрушение водобойного колодца СШГЭС.

Реальные возможности гидротехнического строительства в совокупности с недостаточным финансированием не позволили выполнить программу подготовительных работ в полном объеме и обеспечить проектную готовность этапов строительства, что привело к значительному удлинению сроков работ. Фактическая продолжительность подготовительного периода составила 12 лет (против предусмотренных в проектном задании – 5), а общая продолжительность строительства – 27 лет (против – 9).

Выдерживание директивного срока ввода гидроагрегата № 1 в декабре 1978 г. при отставании укладки бетона на 900 тыс. м³. (уложено 3200 тыс. м³ при проектном пусковом объеме 4100 тыс. м³) привело к изменению схемы пропуска половодья 1979 г. В связи с этим предусматривалось сохранить проектную схему заделки донных водосбросов 1978 г. (без использования их в качестве резерва) и осуществлять пропуск
половодья через часть водосбросов второго яруса и часть фронта водосбросной плотины — переливом через штрабленные четные секции. По технологическим причинам запроектированная готовность сооружений была не выполнена. В результате пропуск половодья осуществлялся в неуправляемом режиме, что привело к затоплению здания ГЭС.

Перед пуском последующих агрегатов проектом предусматривалось возведение плотины полным профилем, который обеспечить по тем же технологическим причинам было невозможно. В результате напряженно-деформированное состояние плотины, работающей неполным профилем, не соответствовало проектным предположениям. Это привело к трещинообразованию в бетоне первых столбов, разуплотнению скального основания и, как следствие, повышенной фильтрации воды, частичной деградации материалов в этих зонах. Указанные последствия потребовали их устранения в процессе эксплуатации силами эксплуатационного персонала. Решением Научно-технического Совета РАО «ЕС России» (Протокол №1 от 26.12.1996 г.) затраты на работы по ремонту плотины и основания, проектно-изыскательские цели рекомендовано включать в тариф на отпускаемую электроэнергию.

При гашении энергии холостых сбросов воды со скоростями на сходе с носка до 55 м/с и удельными расходами в водобойном колодце до 120 м³/с·н.м. крепление dna колодца не обладало такими необходимыми качествами, как прочность (сцепление) и плотность (водонепроницаемость) контакта плит с бетонной подготовкой, ремонтопригодность, резервирование работы приповерхностных гидроизолирующих шпонок путем их дублирования придонными и др.

Эти конструктивные недостатки стали одной из главных причин серьезного инцидента, связанного с разрушением крепления dna колодца в 1985 г. при пропуске через недостроенное сооружение паводкового расхода 4500 м³/с при уровнях ВБ 501,75-517,13 м.
В первый период эксплуатации СШ ГЭС были выявлены недостатки конструкции изготовления некоторых узлов гидротурбин. Для ликвидации их специалистами эксплуатации и заводов изготовителей был выполнен значительный комплекс работ по доводке гидротурбин для повышения их надежности. Эта работа продолжается, в частности, по заварке трещин на лопастях.

После ввода в эксплуатацию СШ ГЭС прошло более 20 лет, поэтому ряд морально и физически устаревшей аппаратуры и оборудования нуждается в замене (ТА-100 АСУ ТП, рабочие колеса гидротурбин, КАГи-15.75 следует заменить на выключатели с элегазовой изоляцией).

Эксплуатационниками разработан развернутый многолетний план перевооружения гидроэнергетического комплекса, куда вошли указанные выше мероприятия. Некоторые примеры потребностей и решений приводятся ниже, а стоимость и сроки выполнения этих работ приведены в Приложении № 1.

Рабочие колеса гидротурбин.

Гидротурбины СШ ГЭС типа РО-230/833-677 изготовлены на ПО ЛМЗ. Срок эксплуатации почти половины турбин составляет 20 лет со средней наработкой более 85 тыс. час.

За последние годы эксплуатации турбин были выполнены значительные объемы ремонтных, восстановительных и исследовательских работ. Это позволило дать оценку надежности и реально определить эксплуатационный ресурс гидротурбин. После наработки, в среднем 50 тыс. час., объемы ремонтных работ увеличиваются значительно. Так, при наработке в среднем 9-10 тыс. час. выполняются массовые и регулярные работы по заварке трещин на лопастях рабочих колес. В среднем ежегодно такой ремонт выполняется на 4-5 гидроагрегатах, что связано с большими трудозатратами и с увеличением простоя гидроагрегатов в
ремонте.
Наихудшее состояние имеет рабочее колесо турбины № 10. На нем произведен наибольший объем ремонтных работ по ликвидации трещин, как на лопастях, так и на ободе.
Замена КАГ-15,75.
Аппаратные генераторы КАГ-15,75, состоящие из выключателя нагрузки, разъединителя, трансформаторов тока и напряжения эксплуатируются в целях генераторов СШ ГЭС с 1984 г.
КАГ изготавливался ОАО ВО «Электроаппарат» (г. С-Петербург) только для Саяно-Шушенской ГЭС, т.е. серийного выпуска и соответствующей заводской доводки его не было, поэтому аппарат работает ненадежно. В эксплуатации имели место случаи полного повреждения контактной системы разъединителя, а также случаи повреждения выключателей КАГов при отключении токов, не превышающих номинальные. Конструкция КАГа не ремонтно-пригодна. Трудозатраты, связанные с демонтажем большого количества болтовых соединений, уплотнений и вспомогательных узлов аппарата сопоставимы с трудозатратами на текущий ремонт генератора. После поставки на ГЭС 10 аппаратов производство их и запчастей к ним заводом прекращено. К настоящему времени на СШ ГЭС практически исчерпаны запасные части, что может привести в ближайшие годы к дополнительным простям в ремонте гидроагрегатов.
Кроме того, учитывая, что СШ ГЭС подключена к противоаварийному управлению ОДУ Сибири, в целях генераторов необходимо иметь полноценные генераторные выключатели.
Отечественной промышленностью генераторные выключатели с необходимыми для СШ ГЭС параметрами не выпускаются.
В 1994 г. Ленгидропроектом по заданию СШ ГЭС был произведен поиск возможных вариантов замены КАГов на полноценный генераторный
выключатель среди отечественных и зарубежных производителей оборудования. Было определено, что необходимо установить выключатели DR 36 V1750 фирмы ABB. Стоимость замены одного КАГа на генераторный выключатель составляет – 58,8 млн. руб.

Модернизация АСУ-ТП.

АСУ-ТП Саяно-Шушенского гидроэнергокомплекса эксплуатируется более 20 лет, физически и морально устарела и не отвечает современным требованиям надежного и экономичного ведения режимов. Технические средства АСУ-ТП (ЭВМ-2 и ТА-100) выработали свой ресурс. По данным заводов-изготовителей срок службы СМ-2 и ТА-100 составляет 8-10 лет. Производство запасных частей к оборудованию СМ-2 и ТА-100 прекращено более 10 лет назад.

В 1998 г. из-за резкого увеличения отказов оборудования были выведены из эксплуатации управляющие подсистемы АСУ-ТА (групповое регулирование активной мощности, регулирование напряжения и реактивной мощности, рациональное управление оборудованием Майнского гидроузла с пульта управления СШ ГЭС). Технические средства информационных подсистем АСУ-ТП (СМ-2 и УСО) также изношены, эксплуатируются с большими трудностями и требуют замены в ближайшие годы. Требуют замены, используемые в технологической автоматике агрегатов и сигнализации ненадежные полупроводниковые элементы «Логика-Т», производство которых прекращено, а созданный на ГЭС запас к настоящему времени практически исчерпан».

Приказом РАО «ЕЭС России» от 13.06.2000 № 329 Центральной комиссией «Саяно-Шушенский гидроэнергетический комплекс» принят в эксплуатацию с оценкой «хорошо».

Кроме того, согласно приложению №3 (к акту Центральной комиссии по приемке в эксплуатацию Саяно-Шушенского гидроэнергетического комплекса), комиссии были предъявлены не актуализированные на момент приемки в эксплуатацию материалы, в частности:

- Заключение секции
 по вопросам охраны окружающей среды – 1988-1991 гг
4.3. Регламентные работы на ГА-2 и его модернизация с момента ввода в эксплуатацию СШГЭС.

Кроме типовых работ, выполняемых при капитальном ремонте оборудования гидроагрегата выполнены: замена регулятора возбуждения АРВ-СДП1 на микропроцессорный АРВ-М с системой фазоимпульсного управления тиристорных преобразователей (панель ШРВ-М), выполнена передача управляющих импульсов от ШРВ-М к тиристорным преобразователям с помощью оптоволоконных кабелей, реконструкция управления моторных задвижек системы технического водоснабжения гидроагрегата; монтаж резервных датчиков холодного и горячего масла генераторного подшипника и подпятника.

По рабочему колесу выполнены следующие работы:

- устранение кавитационных разрушений лопастей РК согласно технологии ПО ЛМЗ № 477 ОГсв электродами ЦЛ-11;
- контроль и подгонка входных кромок лопастей РК к расчетной по шаблону;
- замер и исправление уклона вала;
- центровка агрегата по лабиринтным уплотнениям.

По турбинному подшипнику:

- демонтаж деталей распорных узлов, сегментов, воротниковых уплотнений, ограждения вала;
- чистка ванны, крышки ванны, деталей распорных узлов, сегментов, корпуса ТП, деталей крепления воротниковых уплотнений от ржавчины,
окраска поверхностей на 2 слоя;
- изготовление и замена верхнего и двух нижних воротниковых уплотнений;
- выставлены нулевые зазоры.

В результате проведенных работ дефектов не обнаружено.

Капитальный ремонт ГА выполнен в соответствии с инструкцией по монтажу гидротурбинного оборудования 2244000 ИМ ПО ЛМЗ и инструкцией по монтажу гидрогенератора ОБС.412.033 ИМ ЛМПО «Электросила».

В заключении к акту отмечено, что на основании вышеизложенного, руководствуясь «Правилами организации технического обслуживания и ремонта оборудования, зданий и сооружений электростанций и сетей» (СО 34.04.181-2003), подтверждено: оценка качества отремонтированного оборудования – «Соответствует НТД», оценка качества выполненных ремонтных работ – «Хорошо».

После проведения капитального ремонта ГА-2 был принят комиссией 16.01.2006 и введен в подконтрольную эксплуатацию в соответствии с п. 2.9.20 СО 34.04.181 – 2003 (РАО ЕЭС России). Срок работы в подконтрольной эксплуатации 30 календарных дней.

«При приемке оборудования из ремонта должна производиться оценка качества ремонта, которая включает оценку:
- качества отремонтированного оборудования;
- качества выполненных ремонтных работ;
- уровня пожарной безопасности.

Оценки качества устанавливаются:
- предварительно - по окончании приемо-сдаточных испытаний;
- окончательно - по результатам месячной подконтрольной эксплуатации, в течение которой должна быть закончена проверка работы оборудования на всех режимах, проведены испытания и наладка всех систем»
(п. 1.6.12 Правил технической эксплуатации электрических станций и сетей Российской Федерации, утвержденных приказом Минэнерго Российской Федерации от 19 июня 2003 г. № 229, зарегистрированных в Минюсте Российской Федерации 20 июня 2003 г. № 4799). Далее – ПТЭЭСиС РФ.

В соответствии с годовым графиком ремонта основного оборудования СШГЭС в 2009 г., утвержденным главным инженером СШГЭС А.Н. Митрофановым 14.03.2008 г., в период с 14.01.2009 г. по 16.03.2009 г. проведен средний ремонт ГА 2 СШГЭС с наплавкой рабочего колеса.

Работы по ремонту гидроагрегатов СШГЭС и МГЭС в 2009 г. выполнялись на основании Договора подряда № СШ-3-470-2008 от 21 января 2009 г., заключенного между ОАО «РусГидро» с одной стороны, и ЗАО «Гидроэнергогоремонт» с другой стороны.

«Средний ремонт – это ремонт, выполненный для восстановления исправности и частичного ресурса изделия, с заменой или восстановлением составных частей ограниченной номенклатуры и контролем технического состояния составных частей, выполняемый в объеме, установленном нормативной документацией» (приложение 1 Правил организации технического обслуживания и ремонта оборудования, зданий и сооружений электростанций и сетей, утвержденных ОАО РАО «ЕЭС России» 25.12.2003).

Распоряжением главного инженера СШГЭС А.Н. Митрофанова от 11.01.2009 г. № 1 руководителем среднего ремонта ГА-2 назначен заместитель главного инженера СШГЭС Г.И. Никитенко.

Перед началом среднего ремонта 11.01.2009 г. комиссией, в составе: председателя - главного инженера СШГЭС А.Н. Митрофанова; членов комиссии:
от СШГЭС:
заместителя главного инженера, руководителя ремонта – Г.И. Никитенко;
начальника отдела планирования и подготовки ремонтов - А.И. Пересторонина;
от ремонтного предприятия:
генерального директора ЗАО «Гидроэнергoremонт» - А.П. Погоняйченко.
была проведена проверка готовности электростанции и ремонтного предприятия к среднему ремонту ГА-2.
В результате проверки установлено:
запасные части, материалы, оборудование взамен выработавшего ресурс подготовлены полностью;
производственные бригады собственного ремонтного персонала и подрядных предприятий – исполнителей ремонта сформированы в полном численном и профессиональном составе;
грузоподъемные средства, технологическая оснастка, средства механизации, посты энергоносителей, ремонтные площадки подготовлены полностью;
график производства ремонтных работ, технологические, нормативные и организационные документы, определяющие производственные задания подразделениям – исполнителям ремонта подготовлены полностью.
На основании результатов проверки, комиссия сделала заключение, что электростанция к выполнению ремонта в сроки установленные планом готова, план подготовки ремонта оборудования ГА 2 СШГЭС выполнен в полном объеме.
В соответствии с ведомостью выполненных работ, утвержденной главным инженером СШГЭС А.Н. Митрофановым 23.03.2009 г. и согласованной с главным инженером ЗАО «Гидроэнергoremонт» О.В. Башмаковым 23.03.2009 г., в период среднего ремонта по типовой номенклатуре с реконструкцией АСУ ТП ГА 2 СШГЭС выполнены
следующие работы:
ремонт аварийно ремонтного затвора;
ремонт проточной части;
ремонт рабочего колеса;
ремонт направляющего аппарата;
ремонт турбинного подшипника;
ремонт системы технического водоснабжения (ТВС);
ремонт генераторного подшипника;
ремонт подпятника;
ремонт системы торможения;
ремонт системы охлаждения;
ремонт системы регулирования;
демонтаж колонки ЭГР-10-7-2И и механизма обратной связи;
монтаж колонки ЭГР-РО-6-1 (ПР ГА 040505.01).

Конкретные наименования и номенклатура выполненных работ согласно документам, предоставленным филиалом ОАО «РусГидро» «Саяно-Шушенская ГЭС имени П.С. Непорожнего:

Ппо аварийно-ремонтному затвору: осмотр оборудования АВРЗ; гидроцилиндра; гидропанели управления гидроприводом; разборка, смазка колонки управления, настройка; разборка, смазка, настройка клапана предохранительного.

Ппо проточной части: осушение проточной части; вскрытие люков в СК и конус ОТ;

Осмотр спиральной камеры, отсасывающей трубы, направляющего аппарата, облицовки конуса ОТ, крепления конуса-обтекателя РК;

Обнаружена и устранена трещина по сварному шву кольцевой заглушки в месте сопряжения нижнего кольца направляющего аппарата и нижнего пояса статора турбины в районе лопатки НА № 10, длиной 1.0 м;

Ппо рабочему колесу (далее-РК): демонтаж, монтаж декоративного
колпака и клапана выпуска воздуха; проверка зазоров по верхнему и нижнему лабиринтному уплотнению;

При осмотре РК обнаружено: кавитационные разрушения тыльной стороны лопастей в районе входной кромки глубиной до 15 мм, верхнего обода глубиной до 12 мм, формуляр «1»; Устранено кавитационные разрушения лопастей РК согласно технологии ПО ЛМЗ № 477 ОГсв электродами ЦЛ-11;

Контроль и подгонка входных кромок лопастей РК к расчетной по шаблону;

Снят формуляр зазоров по лабиринтным уплотнениям № 2,3;

Замена манжетных уплотнений, шнурового резинового уплотнения D=8 мм средних подшипников лопаток НА-9.12;

Переклиновка рычагов лопаток НА № 5, 7, 8, 10, 14, 18, 20;

Проверка вертикальных и торцевых зазоров по лопаткам НА (формуляр № 4);

Вывеска лопаток 9.12 и установка торцевых зазоров;

По турбинному подшипнику (далее-ТП):

По типовой номенклатуре: замена верхнего воротникового уплотнения;

Дополнительно по модернизации АСУ ТП фирмой ООО НПФ «Ракурс»: Установка нового расходомера ТП; установка кронштейнов и датчиков виброконтроля;

По генераторному подшипнику (далее-ГП): По типовой номенклатуре: вскрыта

- ванна, слито масло; Снят формуляр зазоров; демонтаж
термоконтроля, маслоохладителей; выем сегментов с баббитовым покрытием; осмотр ЭМП-сегментов, проверено прилегание фторопласта к сегменту, обнаружено отслоение фторопласта на входной кромке сегментов № 2, 4, 8, 5, 10;

Места отслоений на сегментах затянуты латунными гужонами № 4 - 6 шт., № 2 - 2шт, № 5, 8, 10-по 1 шт.; выем опорных болтов, отсоединение сухарей от сегментов; замер диаметров смятия опорных болтов и сухарей (формуляр № 6);

Сборка сегментов, проверка изоляции более 1 МОМ, установка на место;

Выставлен зазор 0,5 мм между сегментами изоляционного кольца черт. 5БС.357.089 поз. 11 и втулкой подшипника черт. 5БС.201.331 поз.3; демонтаж уловителя паров и выгородки; цветная дефектоскопия выгородки, разделка, заварка раковины в выгородке; разделка, заварка поры в маслованне; замена кожаных уплотнений в выгородки 1410х1170х4, 1330х1170х4 черт. 8БС 373118,8БС 373118-1; чистка маслованны; проверка датчиков уровня ГП; опрессовка маслоохладителей и трубопроводов ТВС рабочим давлением, замечаний нет; сборка крышки маслованны с заменой резинового уплотнения; выставлен равномерный зазор по 0,25 мм; сборка подшипника, в ванну залито чистое масло Т-30.

Дополнительно по модернизации АСУ ТП фирмой ООО НПФ «Ракурс»: установка термоконтроля с заменой термосигнализаторов на термосопротивления, обмоткой и окраской трассы термоконтроля; замена импульсных трубок на нержавеющие и вентиляй дифманометров-расходомеров; замена расходомеров на датчики нового типа «Jumo»; установка кронштейнов и датчиков вибросконтроля; установка датчиков положения ЛБ, НБ; установка датчиков давления «метран»;

По подпятнику: По типовой номенклатуре: ванна, слито масло; слив воды из маслоохладителей и подводящей системы; демонтаж термоконтроля,
вертикальных и горизонтальных щитков; чистка маслованны; выем сегментов, осмотр, чистка; испытание кольцевых и U-образных маслоохладителей давлением 5,2 кгс/см² в течение 30 мин, замечаний нет; замена сигнализатора ТПК на ТСМ; монтаж и опрессовка маслоохладителей и трубопроводов ТВС рабочим давлением, замечаний нет;

Дополнительно по модернизации АСУ ТП фирмой ООО НПФ «Ракурс»: замена термосигнализаторов на термопротивления, прокладка трассы, обмотка, окраска трассы; замена проверка датчиков уровня масла; ревизия, чистка, расточка расходомерных шайб ТВС ПП; замена импульсных трубок на нержавеющие; установка датчиков давления «метран»; установка датчика и кронштейна отметчика оборотов; замена манометров ЭКМ на МТП; сборка подпятника; в ванну залито чистое масло;

По системе торможения: По типовой номенклатуре ревизия тормозов; замена дефектных фрикционных подушек; монтаж, настройка клапана торможения нового типа ПР 13Э-16\10-01 в колонке торможения; разборка, сборка, устранение дефектов насоса с пневмоприводом (НПР); замена электроконтактного манометра (ЭКМ) бака НПР на датчик давления КРТ;

Замена манометров на ЭКМ нового типа; ремонт вентилей; гидравлические испытания системы, замечаний нет;

По системе охлаждения: по типовой номенклатуре: чистка механических фильтров ФВ1-6 с заменой фильтрэлементов; чистка бака БВГ-6; замена крана на шаровый вентиль Ду-15, идущего на датчик давления; замена 3-х ходовых кранов на шаровые Ду 15; демонтаж датчика коррозии, установка заглушек; опрессовка системы давлением 5,2 кгс/см² в течение 30 мин, замечаний нет; ремонт насосов НС-1, НС-2-разборка, замена смазки в насосах; замена манометров;

Дополнительно по модернизации АСУ ТП фирмой ООО НПФ «Ракурс»: замена датчиков уровня и указателя уровня бака БВГ-6 на датчик
нового типа Kuebler; замена, обвязка дифманометров-перепадомеров мехфильтров и ИОФ на датчики нового типа Jumo с перемонтажом импульсных трубок;

Установка, обвязка солемеров (первичный, вторичный);

По системе регулирования: По типовой номенклатуре: слито масло из системы; чистка котлов МНУ, лекажного бака, фильтров бака МНУ;

Внутренний осмотр (ВО) и гидравлические испытания (ГИ) котлов маслонапорной установки (МНУ); изготовление и замена прокладок на люках бака и котлов МНУ;

Проверка и настройка предохранительного клапана воздушного котла МНУ; Проверка и настройка предохранительных клапанов насосов МНУ; ремонт обратных клапанов насосов МНУ; монтаж, наладка и регулировка нового клапана впуска воздуха МНУ; Присоединение трубопроводов, опрессовка пробным давлением 10 кгс/см², рабочим давлением 63 кгс/см²; монтаж механизма обратной связи на ПСМ; ремонт, чистка рычажной передачи черт, 2156652 СБ; чистка крышки турбины; заполнение системы маслом; замена манометров;

Настройка системы регулирования и системы управления индивидуальными сервомоторами согласно инструкциям 2143536 ТО,2142511 ТО,214732 ПМ, формуляр № 7;

Дополнительно по модернизации АСУ ТП фирмой ООО НПФ «Ракурс»: Замена реле давления МНУ на реле нового типа «Наутилус»; замена указателей уровня котла МНУ на указатель нового типа «Кублер»; установка датчиков положения ИСМ «Микропульс»; установка новых датчиков положения стопора ПСМ; замена вращающего механизма обратной связи.

Ремонт выполнен за 1409 календарных часов при плане 1488 календарных часа.
Комиссия СШГЭС в составе:
Председателя комиссии – главного инженера СШГЭС
А.Н. Митрофанова
и членов комиссии - заместителя главного инженера по технической части СШГЭС, руководителя ремонта СШГЭС – Г.И. Никитенко;
заместителя председателя комиссии – заместителя главного инженера по эксплуатации СШГЭС - Е.И. Шерварли;
начальника ОППР СШГЭС – А.И. Пересторонина;
начальника ЭТЛ СШГЭС – А.В. Матвиенко;
начальника ЛТД СШГЭС – В.А. Белобродова;
начальника САСДТУ СШГЭС – А.М. Волошина;
начальника ПТС СШГЭС – Т.Ю. Толошиновой;
начальника ОНТБ СШГЭС - Н.В. Чуричкова;
главного инженера ЗАО «Гидроэнергоремонт» - О.В. Башмакова;
начальника турбинного цеха ЗАО «Гидроэнергоремонт» - В.Г. Сивкова;
начальника электротехнического цеха ЗАО «Гидроэнергоремонт» - А.В. Чайникова.

на основании рассмотренных документов, результатов приемо-сдаточных испытаний проведенных в соответствии с Программой эксплуатационных испытаний ГА 2 СШГЭС, по окончании среднего ремонта и реконструкции АСУ ТП, утвержденной главным инженером СШГЭС А.Н. Митрофановым 27.02.2009г. ГА-2 введен в подконтрольную эксплуатацию.

По результатам подконтрольной эксплуатации, комиссия приняла ГА 2 в постоянную эксплуатацию и оформила Акт на приемку из среднего ремонта ГА СШГЭС от 15.04.2009 г. с окончательной оценкой – «Хорошо», и в соответствии с требованиям НТД.

Уровень пожарной безопасности отремонтированного оборудования –
соответствует требованиям НТД.

Согласно договора СШ-3-21-2008/04-05-06 от 16 июня 2008 года подписанного заместителем руководителя Бизнес-единицы «Производство» ОАО «ГидроОГК» Юсуповым Т.М. на основании решения закупочной комиссии филиала ОАО «ГидроОГК» - Саяно-Шушенская ГЭС им. П.С.Непорожнего от 05.03.20008. ООО «ПромАвтоматика» обязано было осуществить разработку и поставить 10 комплектов оборудования колонок электрогидравлического регулятора и выполнить монтажные работы.

Технические требования на поставку и замену гидромеханической части электрогидравлического регулятора частоты вращения турбины сформулированы в приложении №1 к договору СШ-3-21-2008/04-05-06 от 16 июня 2008 года и подписаны заместителем руководителя Бизнес-единицы «Производство» ОАО «ГидроОГК» Юсуповым Т.М.

В ходе среднего ремонта ГА-2 фирмой ОАО «Промавтоматика» были выполнены работы по демонтажу колонки ЭГР-10-7-2И и механизма обратной связи и монтажу колонки ЭГР-РО-6-1 (ПР ГА 040505.01).

Пункт 9 Приложения 1 к техническим требованиям на поставку и замену гидромеханической части электрогидравлического регулятора частоты вращения турбины описывает особенности работы в аварийных ситуациях.

Однако режим закрытия направляющего аппарата в алгоритме работы электрогидравлического регулятора частоты вращения турбины при потере электропитания предусмотрен не был.

В опытную эксплуатацию электрогидравлическая колонка управления ЭГК РО-6-1 ГА 2 СШГЭС после монтажа принята (Акт приемки от 16.03.2009 г.) комиссией в составе:

Председателя комиссии — главного инженера СШГЭС А.Н. Митрофанова.

Членов комиссии:
Заместителя главного инженера СШГЭС – Е.И. Шерварли;
Заместителя главного инженера СШГЭС – Г.И. Никитенко;
Начальника ОДС СШГЭС – И.Ю. Погоняйченко;
Начальника ЭТЛ СШГЭС – А.Н. Сивцова;
Заместителя начальника ТЦ ЗАО «Гидроэнергоремонт» - Е.В. Кондратьева;
Руководителя группы ТА ЭТЛ – А.В. Уткина;
Ведущего инженера проекта ООО «ПромАвтоматика» - Д.А. Шнуровского.

К акту приложены следующие документы:
технические требования на модернизацию гидравлической части системы регулирования гидроагрегатов;
руководство по эксплуатации ЭГК-РО-6-1;
протоколы наладки и испытаний ЭГК-РО-6-1 ГА 2 СШГЭС;
инструкция по эксплуатации регулятора частоты вращения ГА 2 с колонкой управления ЭКГ-РО-6-1;
комплект исполнительных и принципиальных монтажных схем.

Комиссия приняла решение:
- ввести в опытную эксплуатацию электрогидравлическую колонку управления ЭГК-РО-6-1 ГА 2 СШГЭС на период с 16.03.2009 г. по 16.09.2009 г.

Последние вибрационные испытания гидроагрегата № 2 были произведены 12-16 марта 2009г. после окончания среднего ремонта.

Измерения проводились измерительным комплексом «МПС-200» и вибродатчиками В&К специалистами «Саяно-Шушенской ГЭС».
(Протокол №800 от 12.03.09, протокол №801 от 12.03.09, протокол №802 от 12.03.09, протокол №803 от 16.03.09).

Испытания проводились в соответствии с СТО 17330282.27.140.001-2006 «Методики оценки технического состояния основного оборудования
гидроэлектростанций» на режимах холостого хода и при нагрузке 104 и 601 МВт, при частоте вращения ротора гидроагрегата 142,8 об/мин, при напоре 190,98 м. Вибрация конструктивных элементов гидроагрегата и биение вала при испытаниях в стационарных нагрузочных режимах не выходила за значения разрешенных к эксплуатации уровней и оценивалась как удовлетворительная.

Размах горизонтальной вибрации корпуса турбинного подшипника приведен в таблице:

<table>
<thead>
<tr>
<th>Дата</th>
<th>12.03.2009</th>
<th>12.03.2009</th>
<th>16.03.2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Напор, м</td>
<td>190,94</td>
<td>190,98</td>
<td>190,98</td>
</tr>
<tr>
<td>Режим работы, МВт</td>
<td>Холостой ход</td>
<td>104</td>
<td>601</td>
</tr>
<tr>
<td>Значения вибрации (мкм)</td>
<td>113</td>
<td>122</td>
<td>149</td>
</tr>
<tr>
<td>НБ/ЛБ</td>
<td>129</td>
<td>126</td>
<td>137</td>
</tr>
</tbody>
</table>

Согласно п. 3.3.12. ПТЭСиСРФ: «Не допускается длительная работа гидроагрегата при повышенных уровнях вибрации:

размах горизонтальной вибрации (двойная амплитуда) корпуса турбинного подшипника, а также размах горизонтальной вибрации верхней и нижней крестовин генератора, если на них расположены направляющие подшипники, в зависимости от частоты вращения ротора гидроагрегата не должен превышать следующих значений:

<table>
<thead>
<tr>
<th>Частота вращения ротора гидроагрегата, об./мин.</th>
<th>60 и менее</th>
<th>150</th>
<th>300</th>
<th>428</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Допустимое значение вибрации, мм</td>
<td>0,6</td>
<td>0,16</td>
<td>0,12</td>
<td>0,10</td>
<td>0,08</td>
</tr>
</tbody>
</table>

Таким образом, размах горизонтальной вибрации корпуса турбинного подшипника на оборотной частоте был близок к приведенным выше допустимым значениям, при которых длительная работа гидроагрегата не допускается.
В соответствии с п.3.3.8 ПТЭЭСиСРФ «Гидроэлектростанции мощностью свыше 30 МВт и с количеством агрегатов более трех должны быть оснащены системами группового регулирования активной мощности (ГРАМ) с возможностью использования их для вторичного автоматического регулирования режима энергосистем по частоте и перетокам мощности (АРЧМ)».

В соответствии с п.4.5.1. технического задания, ГРАМ должен был обеспечивать вычисление величин имеющихся регулировочных диапазонов на загрузку и разгрузку для подключенных к ГРАМ агрегатов.

П.4.4.5. технического задания предусматривал учет особенности работы гидроагрегатов СШГЭС в соответствии с приложением №3 «Регулировочные диапазоны работы Н-ГА при работе в 3-4 зоне». В приложении №1 технического задания приведены характерные зоны работы гидроагрегатов СШГЭС. В зоне 3 эксплуатация рекомендуется, в зоне 4 эксплуатация разрешается, что совпадает с рекомендованной зоной эксплуатационной характеристикой гидротурбин РО-230/833-В-677 завода-изготовителя.

П.4.5.7. технического задания предусматривал очередность ввода в генераторный режим (в автоматическом и полуавтоматическом режимах) для агрегатов, находящихся в резерве.

Технические требования к системе ГРАМ ГЭС были сформулированы в Общих технических требованиях к системе ГРАМ гидроэлектростанций, утвержденных Департаментом научно-технической политики и развития

П.2.2 предусматривает, что распределение нагрузки между гидроагрегатами, работающими на групповом регулировании должно производиться с учетом индивидуальных ограничений по максимальной мощности и зон нежелательной работы по одному из следующих способов:

- равенству мощностей или открытий направляющих аппаратов при идентичности энергетических характеристик гидроагрегатов;
- по минимуму суммарных потерь при различных энергетических характеристиках гидроагрегатов».

П.2.3. допускал, что при наличии зоны нежелательной работы внутри рабочего диапазона нагрузок должна быть предусмотрена возможность автоматического перевода необходимого количества гидроагрегатов из верхней зоны в нижнюю при снижении нагрузки ГЭС и обратного перевода из нижней зоны в верхнюю при увеличении нагрузки ГЭС.

В соответствии с вышеизложенным были подготовлены «Технические требования на модернизацию группового регулятора активной и реактивной мощности гидроагрегатов Саяно-Шушенской ГЭС. Предложения ООО «Промавтоматика», утвержденные и.о. главного инженера ОАО «Саяно-Шушенская ГЭС им. П. С. Непорожнего» А. Н. Митрофановым 08.02.2005 года, генеральным директором ООО «Промавтоматика» А. А. Ларионовым (без даты) и согласованные главным диспетчером ОДУ Сибири А. Б. Работным (без даты).

П 3.4 предусматривал, что корректировку алгоритмов ГРПМ следует выполнять в соответствии с руководящими документами в частности СО 34.35.524-2004 Общих технических требованиях к системе ГРПМ гидроэлектростанций.

23.10.2006 была введена в опытную эксплуатацию подсистема группового регулирования активной мощности регулятора ГРПМ (Акт приемки в опытную эксплуатацию без номера от 23.10.2006,
утвержденный и.о. главным инженером ОАО «Саяно-Шушенская ГЭС им. П.С. Непорожнего» Е.И. Шерварли. Акт предписывал ввести в опытную эксплуатацию подсистему регулирования активной мощности регулятора ГРАРМ на период с 23.10.2006 по 23.10.2007.

25.03.2008 года была введена в опытную эксплуатацию подсистема группового регулирования напряжения и реактивной мощности регулятора ГРАРМ (Акт приемки в опытную эксплуатацию без номера от 25.03.2008 года, утвержденный главным инженером ОАО «Саяно-Шушенская ГЭС им. П.С.Непорожнего» А.Н.Митрофановым). Акт указывал на устранение замечаний выявленных в ходе испытания подсистемы ГРНРМ регулятора ГРАРМ СШГЭС и предписывал ввести в опытную эксплуатацию подсистему регулирования напряжения и реактивной мощности регулятора ГРАРМ на период с 05.05.2008 по 05.05.2009.

В соответствии с требованиями п. 3.3.9 ПГЭЭСиСРФ установлено, что «условия, разрешающие пуск агрегата, его нормальный и аварийный останов и внеплановое изменение нагрузки, должны быть изложены в местных инструкциях, утвержденных техническим руководителем.
гидроэлектростанции и находящихся на рабочих местах оперативного персонала.

Значение всех параметров, определяющих условия пуска гидроагрегата и режим его работы, должны быть установлены на основании данных заводов-изготовителей и специальных натуральных испытаний».

Принятая в промышленную эксплуатацию подсистема допускала нахождение гидроагрегатов в зоне 1 (разрешенной к работе) и переходу через зону 2 (не рекомендованную к работе). При этом количество переходов не регламентировалось и не ограничивалось. Время нахождения в не рекомендованной зоне и скорости ее прохождения были установлены без согласования с заводом-изготовителем.

Услуги по техническому обслуживанию вспомогательного оборудования СШГЭС и МГЭС в 2009 г. проводились на основании Договора № СШ-3-474-2008 возмездного оказания услуг по техническому обслуживанию оборудования СШГЭС и МГЭС в 2009 г. в соответствии с Техническими требованиями (Приложение 1 к настоящему Договору), заключенного между ОАО «РусГидро» с одной стороны, и ЗАО «Гидроэнергомонт» с другой стороны.

Обслуживание гидроагрегатов проводится силами оперативного персонала СШГЭС в соответствии с «Инструкцией по эксплуатации гидроагрегатов Саяно-Шушенской ГЭС», утвержденной главным инженером филиала ОАО «РусГидро» - СШГЭС
А.Н. Митрофановым 19.05.2009г., на основании месячных эксплуатационных графиков работ оперативного персонала машинного зала СШГЭС, утвержденных главным инженером филиала ОАО «РусГидро» - СШГЭС А.Н. Митрофановым и подписанных начальником оперативной службы И.Ю. Погоняйченко.

4.4 Работа гидроагрегатов Саяно-Шушенской ГЭС в ОЭС Сибири.

По состоянию на 00 час. 00 мин. (время МСК) 16.08.09 (согласно данным ОАО «Системный оператор ЕЭС»): (ОАО «СО ЕЭС»)

- Работа станций ОЭС Сибири осуществляется по плановому диспетчерскому графику;

- Братская ГЭС подключена на управление от центральной станции автоматики регулирования частоты и мощности (далее - ЦС АРЧМ) ОДУ Сибири (г. Кемерово) в соответствии с уставками, задаваемыми диспетчером главного диспетчерского центра ОАО «СО ЕЭС» (г. Москва) зависимости от необходимой доли участи ОЭС Сибири во вторичном регулировании частоты в ЕЭС России с учетом перетоков мощности на связях ЕЭС Казахстана с Европейской частью ЕЭС России;

- Саяно-Шушенская ГЭС работала по плановому диспетчерскому графику (не под управлением ЦС АРЧМ ОДУ Сибири по причине необходимости обеспечения планового суточного попуска воды через гидроузел).
16.08.2009 г. в 20 час 20 мин. (мск) на рабочем месте сменного персонала ССДТУ Братской гидроэлектростанции (БГЭС) сработала пожарная сигнализация цифрового линейного аппарата зала (ЦЛАЗ) ООО «Иркутскэнергосвязь», размещенного в арендуемом у БГЭС помещении.

На центральном пульте управления (ЦПУ) БГЭС сработала сигнализация о неисправности каналов связи, отключились каналы автоматического регулирования частоты и перетоков мощности (АЧРМ), электронно-вычислительных машин (ЭВМ), пропала голосовая связь с дежурным диспетчером (ДД) оперативно - диспетчерского управления (ОДУ), ДД ОАО «Иркутскэнерго» и дежурным диспетчером ООО «Иркутскэнергосвязь».

16.08.2009 г. в 20 час. 21 мин. (мск.) о пожаре было сообщено оператору пожарной команды по охране БГЭС ООО «Пожарная охрана Иркутскэнерго» (далее – ПК).

В период с 20 час. 23 мин. (мск.) по 20 час 31 мин. 16.08.2009 г. в результате пожара поочередно произошел выход из строя оптических линков между БГЭС - ПС «Покосное», БГЭС - ПС «Тулун», повреждено оборудование основных и резервных каналов связи, устройств АРЧМ БГЭС, устройств телемеханики, прямых голосовых каналов с ОДУ «Сибири» и Иркутским РДУ.

В 20 час. 31 мин. (время мск) 16.08.09 диспетчером ОДУ Сибири отдана команда начальнику смены станции (далее – НСС) Саяно-Шушенской ГЭС на перевод ГРПРМ в режим автоматического регулирования от ЦС АРЧМ ОДУ Сибири. До 04-12 (время мск) 17.08.09 Саяно-Шушенская ГЭС работала в режиме управления от ЦС АРЧМ ОДУ Сибири.

16.08.2009 г. в 20 час.50 мин. возгорание было локализовано.

17.08.2009 г. в 10 час.03 мин. аварийный режим был ликвидирован, связь восстановлена.
В период аварийного режима на устройствах связи и телемеханики, недоотпуска электрической энергии БГЭС не было.

В соответствии с должностной инструкцией старшего диспетчера оперативно-диспетчерской службы, утвержденной генеральным директором филиала ОАО «СО ЕЭС» ОДУ Сибири 28.03.2008 г., п.3.2 диспетчер обязан приоритетно пользоваться всеми средствами связи энергообъединения и энергосистем, как оперативно-диспетчерской, так и прочими средствами связи, включая сотовый мобильный телефон, закрепленный за ОДС, а также приоритетно пользоваться оперативно информационным комплексом (ОИК) для решения оперативных задач, получения оперативной и справочной информации.

По данным оперативного журнала БГЭС связь по сотовому телефону была восстановлена с дежурным диспетчером ОДУ 16.08.2008 г. в 21 час. 00 мин. Таким образом, отсутствие управления БГЭС со стороны ОДУ Сибири составило 40 мин.

Диспетчерские команды на изменение активной нагрузки в период с 21 час 00 мин. (время МСК) 16.08.09 по 04 час. 23 мин. (время мск) 17.08.09 на Братской ГЭС приведены в таблице 4.4.1, в период с 20 час. 00 мин. (время мск) 16.08.09 по 04-23 (время мск) 17.08.09 на Саяно-Шушенской ГЭС в таблице 4.4.2.
<table>
<thead>
<tr>
<th>время</th>
<th>команда</th>
<th>цель</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.08.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>21-00</td>
<td>Установить нагрузку на станции 2500 МВт</td>
</tr>
<tr>
<td>2</td>
<td>21-57</td>
<td>С 22-00 работать по плановому диспетчерскому графику</td>
</tr>
<tr>
<td>17.08.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>03-51</td>
<td>Установить нагрузку на станции 2200 МВт</td>
</tr>
<tr>
<td>4</td>
<td>03-57</td>
<td>Установить нагрузку на станции 2400 МВт</td>
</tr>
<tr>
<td>5</td>
<td>04-13</td>
<td>Установить нагрузку на станции 2800 МВт</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Установить нагрузку на станции 3200 МВт</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Установить нагрузку на станции 3500 МВт</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Установить нагрузку на станции 3720 МВт</td>
</tr>
</tbody>
</table>
Таблица 4.4.2
Перечень диспетчерских команд, направленных на изменение активной нагрузки Саяно-Шушенской ГЭС, отданных в период времени с 20-00(время МСК) 16.08.09 до 04-23(время МСК) 17.08.09.

<table>
<thead>
<tr>
<th>время</th>
<th>команда</th>
<th>цель</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.08.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20-28</td>
<td>Выполните нагрузку 4000 МВт</td>
</tr>
<tr>
<td>2</td>
<td>20-30</td>
<td>Выполните нагрузку 4200 МВт</td>
</tr>
<tr>
<td>3</td>
<td>20-31</td>
<td>На Саяно-Шушенской ГЭС включайте ЗВМ вы привлекается к регулированию перетока Сибирь – Казахстан уставка сейчас 400 МВт в сторону Казахстана</td>
</tr>
<tr>
<td>4</td>
<td>20-51</td>
<td>Снимите 200 МВт плановой мощности</td>
</tr>
<tr>
<td>5</td>
<td>21-34</td>
<td>Снимите 200 МВт плановой мощности</td>
</tr>
<tr>
<td>6</td>
<td>22-00</td>
<td>Снимите 200 МВт плановой мощности</td>
</tr>
<tr>
<td>7</td>
<td>22-01</td>
<td>Установите плановую мощность 3300 МВт</td>
</tr>
<tr>
<td>8</td>
<td>22-04</td>
<td>Установите плановую мощность 3200 МВт</td>
</tr>
<tr>
<td>9</td>
<td>22-05</td>
<td>Установите плановую мощность 3000 МВт</td>
</tr>
<tr>
<td>10</td>
<td>22-26</td>
<td>Снимите 200 МВт плановой мощности</td>
</tr>
<tr>
<td>17.08.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>00-12</td>
<td>Установите плановую мощность 3000 МВт</td>
</tr>
<tr>
<td>12</td>
<td>00-15</td>
<td>Установите плановую мощность 3200 МВт</td>
</tr>
<tr>
<td>13</td>
<td>00-18</td>
<td>Установите плановую мощность 3400 МВт</td>
</tr>
<tr>
<td>14</td>
<td>00-27</td>
<td>Установите плановую мощность 3600 МВт</td>
</tr>
<tr>
<td>15</td>
<td>01-43</td>
<td>Установите плановую мощность 3800 МВт</td>
</tr>
<tr>
<td>16</td>
<td>02-08</td>
<td>Установите плановую мощность 4000 МВт</td>
</tr>
<tr>
<td>17</td>
<td>02-11</td>
<td>Установите плановую мощность 4100 МВт</td>
</tr>
<tr>
<td>18</td>
<td>02-40</td>
<td>Снимите 100 МВт плановой мощности</td>
</tr>
<tr>
<td>19</td>
<td>03-03</td>
<td>Установите плановую мощность 4100 МВт</td>
</tr>
</tbody>
</table>
В период с 20 час. 21 мин. (время МСК) 16.08.09 по 20 час. 55 мин. (время МСК) 16.08.09 (при отсутствии связи с Братской ГЭС):

- диспетчерский персонал ОАО «СО ЕЭС» в части управления электроэнергетическим режимом работы ОЭС Сибири контролировал перетоки мощности в контролируемых сечениях с учетом работы Саяно-Шушенской ГЭС под управлением от ЦС АРЧМ. В части Братской ГЭС диспетчерский персонал действовал в соответствии с требованиями «Правила предотвращения развития и ликвидации нарушений нормального режима электрической части энергосистем». При этом принимались все меры к восстановлению связи, используя любые виды связи (международная, сотовая, ведомственная и т. д.), а также передача сообщений через другие энергообъекты.

- оперативный персонал Братской ГЭС обеспечивал несение нагрузки станции по плановому диспетчерскому графику в соответствии с требованиями Инструкции по предотвращению нарушений нормального режима в операционной зоне Иркутского РДУ, а также принимал меры к восстановлению связи, используя любые виды связи, в том числе передачу сообщений через другие энергообъекты.

16.08.2009 в 23 часа 14 мин. ГА-2 — был выведен из резерва по решению оперативного персонала станции и введен в работу с регулируемой нагрузкой по заданию филиала ОАО «СО ЕЭС» - ОДУ «Сибири» под автоматическим управлением регулирования мощности АРЧМ - ГРЭМ в качестве приоритетного при исчерпании диапазонов регулирования мощности.

16.08.2009 в 23 часа 31 мин. ГА-10 СШГЭС был выведен из резерва и введен в работу, под управление ГРЭМ не вводился.

17.08.2009 в работе находились девять гидроагрегатов (станционные номера 1, 2, 3, 4, 5, 7, 8, 9 и 10), гидроагрегат ГА-6 выведен в ремонт, ГА-1, 2, 4, 5, 7 и 9 находились под автоматическим управлением регулирования...
мощности АРЧМ-ГРАРМ, ГА-3, 8 и 10 работали на индивидуальном управлении (в базе).

Данные по регулированию мощности ГА-2 приведены в таблице:

<table>
<thead>
<tr>
<th>№ п./п.</th>
<th>Дата</th>
<th>Время (местное)</th>
<th>Мощность (МВт)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.08.2009</td>
<td>23 ч. 15 мин.</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>16.08.2009</td>
<td>23 ч. 17 мин.</td>
<td>110</td>
</tr>
<tr>
<td>3</td>
<td>16.08.2009</td>
<td>23 ч. 30 мин.</td>
<td>200</td>
</tr>
<tr>
<td>4</td>
<td>16.08.2009</td>
<td>23 ч. 31 мин.</td>
<td>165</td>
</tr>
<tr>
<td>5</td>
<td>16.08.2009</td>
<td>с 23 ч. 44 мин. - 00 ч. 15 мин.</td>
<td>600</td>
</tr>
<tr>
<td>6</td>
<td>17.08.2009</td>
<td>00 ч. 30 мин.</td>
<td>135</td>
</tr>
<tr>
<td>7</td>
<td>17.08.2009</td>
<td>00 ч. 30 мин. до 07 ч. 03 мин.</td>
<td>от 10 до 255</td>
</tr>
<tr>
<td>8</td>
<td>17.08.2009</td>
<td>07 ч. 03 мин. до 07 ч. 29 мин.</td>
<td>600</td>
</tr>
<tr>
<td>9</td>
<td>17.08.2009</td>
<td>07 ч. 30 мин.</td>
<td>170</td>
</tr>
<tr>
<td>10</td>
<td>17.08.2009</td>
<td>с 07 ч. 30 мин. до 07 ч. 45 мин.</td>
<td>от 170 до 260</td>
</tr>
<tr>
<td>11</td>
<td>17.08.2009</td>
<td>07 ч.46 мин.</td>
<td>610</td>
</tr>
<tr>
<td>12</td>
<td>17.08.2009</td>
<td>с 07 ч. 47 мин. до 08 ч. 00 мин.</td>
<td>605</td>
</tr>
<tr>
<td>13</td>
<td>17.08.2009</td>
<td>08 ч. 12 мин.</td>
<td>575</td>
</tr>
<tr>
<td>14</td>
<td>17.08.2009</td>
<td>08 ч. 13 мин.</td>
<td>475</td>
</tr>
<tr>
<td>15</td>
<td>17.08.2009</td>
<td>08 ч. 13 мин. 25 сек.</td>
<td>0</td>
</tr>
</tbody>
</table>
Данные по состоянию оборудования ГА на 8 час. 00 мин. 17.08.2009 г. приведены в таблице:

Н=212,04 м; \(I_r = 26,1 \) кА \(\text{ВБ}=537,11 \) м; \(N_{ct}=4390; \)
\(n=142.8 \) об/мин; \(\text{НБ}=325,07 \) м; \(U_{r}=15,75 \) кВ; \(f=50 \) Гц

<table>
<thead>
<tr>
<th>N, МВт</th>
<th>ГА-1</th>
<th>ГА-2</th>
<th>ГА-3</th>
<th>ГА-4</th>
<th>ГА-5</th>
<th>ГА-6</th>
<th>ГА-7</th>
<th>ГА-8</th>
<th>ГА-9</th>
<th>ГА-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>мощность</td>
<td>605</td>
<td>600</td>
<td>570</td>
<td>600</td>
<td>600</td>
<td>120</td>
<td>590</td>
<td>605</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>(Q_m^3 \text{/сек} \text{расход})</td>
<td>315</td>
<td>312</td>
<td>298</td>
<td>312</td>
<td>312</td>
<td>92</td>
<td>307</td>
<td>315</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Открытие на, %</td>
<td>72</td>
<td>72,5</td>
<td>75</td>
<td>74</td>
<td>73</td>
<td>24</td>
<td>71</td>
<td>74</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

\(\text{Давление МПа MНУ25-2/63-3} \)

В заданных пределах

В ремонте

\(P \text{, кГс/cm}^2 \text{амплитуда вибрации подшипника крышки турбины, мкм} \)	200	600	150	110	275	50	175	200	50
\(P_1 \text{, кГс/см}^2 \text{давление в отсасывающей трубе} \)	0,4	1,0	0,6	1,1	0,1	1,3	0,5	0,5	1,1
\(P_2 \text{, кГс/см}^2 \text{давление под крышкой} \)	3,2	3,4	3,6	3,3	1,1	2,2	3,5	3,1	2,3
Данные по состоянию гидроагрегатов на 8 час. 13 мин. 17.08.2009 приведены в таблице:

ВВ=537,11 м
НБ=325,07 м
Н=212,04 м

<table>
<thead>
<tr>
<th>N, МВт мощность</th>
<th>ГА-1</th>
<th>ГА-2</th>
<th>ГА-3</th>
<th>ГА-4</th>
<th>ГА-5</th>
<th>ГА-6</th>
<th>ГА-7</th>
<th>ГА-8</th>
<th>ГА-9</th>
<th>ГА-10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>570</td>
<td>475</td>
<td>570</td>
<td>575</td>
<td>570</td>
<td>85</td>
<td>585</td>
<td>570</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Q, м³/сек расход</td>
<td>298</td>
<td>256</td>
<td>298</td>
<td>302,5</td>
<td>298</td>
<td>75</td>
<td>305</td>
<td>298</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Открытие на, %</td>
<td>70</td>
<td>69</td>
<td>75</td>
<td>71</td>
<td>69</td>
<td>12</td>
<td>71</td>
<td>71</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>P Давление МПа МНУ25-2/63-3</td>
<td>В заданных пределах</td>
<td>В заданных пределах</td>
<td>В ремонте</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Амплитуда вибрации подшипника крышки турбины, мкм</td>
<td>200</td>
<td>840</td>
<td>175</td>
<td>160</td>
<td>160</td>
<td>50</td>
<td>200</td>
<td>170</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Р, кГс/см² Давление в отсасывающей трубе</td>
<td>0,5</td>
<td>1,2</td>
<td>0,6</td>
<td>1,2</td>
<td>0,1</td>
<td>1,1</td>
<td>0,5</td>
<td>0,6</td>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>Р, кГс/см² Давление под крышкой</td>
<td>3,2</td>
<td>3,5</td>
<td>3,6</td>
<td>3,3</td>
<td>1,1</td>
<td>2,0</td>
<td>3,5</td>
<td>3,1</td>
<td>2,3</td>
<td></td>
</tr>
</tbody>
</table>

Анализ данных из архивов АСУ ТП (трендов) по ГА-1, 2, 3, 4, 5, 7, 8, 9, 10 показал, что гидравлический режим работы штатный, температурный режим сегментов подпятника в норме (не превышает 80° C).

Как видно из сопоставления данных двух приведенных в тексте таблиц амплитуда вибрации подшипника крышки турбины ГА-2 с 08 час. 00 мин. до 08 час. 13 мин. увеличилась на 240 мкм (с 600 до 840мкм при максимальном значении до 160мкм), давление в отсасывающей трубе с 1,0 до 1,2 кГс/см², давление под крышкой с 3,4 до 3,5 кГс/см² все это происходило на фоне снижения мощности с 600МВт до 475МВт.
Состояние затворов водоводов гидроагрегатов на 8 час 00 мин. 8 час. 13 мин. 17.08.2009 (время местное) приведены в таблице:

<table>
<thead>
<tr>
<th>Затвор</th>
</tr>
</thead>
<tbody>
<tr>
<td>ГА-1</td>
<td>ГА-2</td>
<td>ГА-3</td>
<td>ГА-4</td>
<td>ГА-5</td>
<td>ГА-6</td>
<td>ГА-7</td>
<td>ГА-8</td>
<td>ГА-9</td>
<td>ГА-10</td>
</tr>
<tr>
<td>открыт</td>
</tr>
<tr>
<td>Q=298</td>
<td>Q=256</td>
<td>Q=298</td>
<td>Q=302,5</td>
<td>Q=298</td>
<td>Q=75</td>
<td>Q=305</td>
<td>Q=298</td>
<td>Q=83</td>
<td></td>
</tr>
<tr>
<td>м³/сек</td>
<td>м³/сек</td>
<td>м³/сек</td>
<td>м³/сек</td>
<td>м³/сек</td>
<td>м³/сек</td>
<td>м³/сек</td>
<td>м³/сек</td>
<td>м³/сек</td>
<td></td>
</tr>
</tbody>
</table>

4.5 Технические причины и организационные события повлиявшие на развитие аварии.

16.08.2009 в 23 часа 14 минут ГА-2 – был выведен из резерва (вид оперативного состояния оборудования, означающего полную готовность к вводу в работу и принятию нагрузки) по решению оперативного персонала станции и введен в работу с регулируемой нагрузкой по заданию филиала ОАО «Системный оператор единой энергетической системы» - ОДУ «Сибири» и был назначен персоналом станции приоритетным для изменения нагрузки при исчерпании диапазонов регулирования мощности.

Изменение мощности включенного в регулирование гидроагрегата №2 осуществлялось автоматически под воздействием регулятора ГРARM в соответствии с командами АРЧМ.

На СШ ГЭС установлены гидроагрегаты с турбиной РО-230/833-B-677. Срок службы гидротурбин, установленный заводом- изготовителем – 30 лет. На момент аварии срок эксплуатации гидротурбин составлял 29 лет 10 мес. Данная гидротурбина имеет узкий регулировочный диапазон при напорах выше расчетных в зоне высоких КПД. При выходе из регулировочного диапазона гидроагрегат попадает в не рекомендованную для эксплуатации зону. Работа в данной зоне сопровождается переходными
гидродинамическими процессами, пульсациями давления в проточном тракте и повышенной вибрацией гидроагрегата. Ограничения по работе турбины в не рекомендованной зоне эксплуатации заводом-изготовителем не установлены.

В техническом задании на разработку ГРАМ не были сформулированы критерии, определяющие приоритеты работы гидроагрегата при групповом регулировании мощности, индивидуальное ограничение по мощности и зонам не рекомендованным к работе, не учитывались особенности режимов работы и конструкции гидроагрегатов. Не были установлены критерии выбора приоритетного агрегата и сроки сохранения приоритета. Алгоритм воздействия ГРАРМ на гидроагрегат в ходе автоматического регулирования мощности и частоты не согласовывался с заводом-изготовителем гидротурбины.

Вследствие многократного возникновения дополнительных нагрузок переменного характера на гидроагрегат, связанных с переходами через не рекомендованную зону, образовались и развились усталостные повреждения узлов крепления гидроагрегата, в том числе крышки турбины. Вызванные динамическими нагрузками разрушения шпилек привели к срыву крышки турбины и разгерметизации водоподводящего тракта гидроагрегата.

Кроме разрушенных, обнаружены шпильки, на которых отсутствуют следы срыва гаек. Это свидетельствует о том, что на момент аварии гайки на шпильках отсутствовали.

Не были выполнены указания п.15 Акта «Приемки в эксплуатацию законченного строительством Саяно-Шушенского гидроэнергетического комплекса на реке Енисей» от 2000 года о замене рабочих колес гидроагрегатов. Руководством ОАО «РусГидро» не были реализованы мероприятия, связанные с повышенным износом оборудования, для обеспечения диапазона автоматического регулирования, несмотря на наличие приказа РАО ЕЭС № 524 от 18.09.2002 года.
Нормативы по контролю состояния и сроку службы узлов крепления, обеспечивающих герметичность гидротурбины, в документах завода-изготовителя и в эксплуатационных документах СШГЭС отсутствуют. В ходе регламентных работ на СШГЭС контроль осуществлялся визуальным способом, не применялись методы неразрушающего дефектоскопического контроля в сроки обеспечивающие безопасную эксплуатацию оборудования (гидроагрегата).

Реализация Стратегии ОАО РАО «ЕЭС России» на 2003 – 2008 гг. предусматривала, что после 1 января 2005 года ремонтные услуги будут осуществляться не только собственным персоналом но и дочерними структурами генерирующих и сетевых компаний. Вывод ремонтного персонала из штатного расписания ГЭС в дочерние структуры и сложившийся характер договорных отношений, не сопровождался внесением в договора (ремонта и обслуживания) требований о регулярном контроле технического состояния оборудования.

Система непрерывного виброконтроля, установленного на гидроагрегате № 2 в 2009 г. не была введена в эксплуатацию и не учитывалась оперативным персоналом и руководством станции при принятии решений.

В период с 21.04.2009 по 17.08.2009 наблюдался рост показаний вибрации турбинного подшипника гидроагрегата № 2, примерно в 4 раза.

Задания по изменению нагрузки ОАО «СО ЕЭС» - ОДУ «Сибирь» путем автоматического управления регулирования мощности АРЧМ - ГРАРМ не учитывали специфику, срок службы и фактическое состояние установленного гидроэнергетического оборудования.

Сведения об обмене информацией между СШГЭС и ОДУ «Сибири» по вопросу установления ограничения на выдачу команд АРЧМ - ГРАРМ отсутствуют.
Развитие аварии с гибелью большого количества людей и разрушением технических устройств, эксплуатируемых на СШГЭС, явилось следствием несоответствия комплекса защитных мер в отношении оборудовании и персонала СШГЭС видам опасности, в частности:

- отсутствие резервного источника питания и ключа управления на главном щите ЦПУ приводов сброса аварийно-ремонтных затворов напорных водоводов;

- отсутствие в алгоритме работ гидромеханической колонки регулятора режима закрытия направляющего аппарата при потере электроснабжения;

- применения оборудования и линий питания, связи, управления, контроля и защиты не во влагопылезащищенном исполнении.

- отсутствие в помещениях с постоянным либо временным расположением персонала, эвакуационных выходов на отметку, не подвергаемую затоплению;

- отсутствие в помещениях с постоянным либо временным расположением персонала необходимых средств индивидуальной защиты.

Комиссия обращает внимание на то, что переход ОАО «ГидроОГК» (ОАО «Русгидро») на Стандарты, разработанные РАО «ЕЭС России» не обеспечил на должном уровне безопасную эксплуатацию ГЭС.

Совместным приказом ОАО «ГидроОГК» и ОАО «УК ГидроОГК» от 06.09.2006 № 141/3562 «О применении Стандартов ОАО РАО ЕЭС России «Методики оценки технического состояния основного оборудования гидроэлектростанций» подписаным Председателем Правления ОАО «ГидроОГК», Генеральным директором ОАО «УК ГидроОГК» Синюгиным В.Ю., введен Стандарт РАО ЕЭС России «Методики оценки технического основного оборудования гидроэлектростанций» и отменен ряд нормативных документов, действующих ранее и обеспечивающих безопасность работы ГЭС.
Аналогично с приведенным выше приказом Указанием ОАО «СШГЭС имени П.С. Непорожного» от 11.09.2006 № 35/102, подписанным главным инженером А.Н. Митрофановым, Стандарт РАО «ЕЭС России» «Методики оценки технического состояния основного оборудования гидроэлектростанций» введен в действие и отменены ранее действующие документы, предусматривающие безопасность работы ГЭС.

Вместе с тем Стандарт РАО «ЕЭС России» - «Методики оценки технического состояния основного оборудования гидроэлектростанций» не предусматривал все необходимые требования для стабильной и безопасной работы оборудования на ГЭС.

Особенности конструкции гидротурбин РО230/833-В-677.

Вертикальная радиально-осевая гидравлическая турбина РО230/833-В-677 гидроАГУ (далее ГА) № 2 изготовлена ПО «ЛМЗ» в соответствии с ТУ108-651-77, внесенными в реестр государственной регистрации за № 1656207 от 23.02.1977, и запущена в штатную эксплуатацию в 1979 году.

Согласно выполненному в июне 1988 года техническому отчету «Натурные испытания турбин Саяно-Шушенской ГЭС со штатными рабочими колесами» № 1008, том 1, утвержденному главным инженером производственного объединения турбостроения «Ленинградский Металлический завод» В.К.Глуких, были определены заводские эксплуатационные характеристики гидроАГУ с указанием не рекомендуемых зон работы гидроАГУ.

«Для постоянной эксплуатации турбин рекомендуется диапазон мощностей, соответствующих зоне III, в которой КПД турбин имеет максимальное значение, пульсации давления в проточной части минимальны, вибрационное состояние турбин оценивается как хорошее. Разрешается работа турбин в зоне I, в которой уровень динамических характеристик является допустимым, но уровень КПД турбин низкий. Работа турбин в зоне II не рекомендуется, а в зоне IV (за линией ограничения мощности) – не допускается. При работе в зоне II работа турбины сопровождается сильными гидравлическими ударами в проточной части и значительными шумами, уровень динамических характеристик остается недопустимым».

Согласно натурным исследованиям завода-изготовителя «зона II – Под РК (рабочим колесом) имеет место мощный центральный жгут с частотой вращения 0,4 - 0,8 Гц. Эта частота является определяющей частотой вертикальных вибраций корпуса ТП (турбинного подшипника), осевого усилия и пульсаций давления во всех точках проточного тракта турбины.
(кроме пульсаций под крышкой турбины, где наряду со жгутовой частотой, определяющими являются также частоты 4,76 и 200 - 300 Гц). Определяющей частотой радиальных вибраций корпуса ТП и биения вала является оборотная частота.

Работа турбины сопровождается сильными гидравлическими ударами в проточной части и значительными шумами.

Размахи пульсаций давления в спиральной камере и отсасывающей трубе достигают 15-22 м водяного столба, а под крышки турбины - 36 m водяного столба вертикальных вибраций ТП-230 мкм, колебания мощности генератора 18-20 МВт, пульсаций осевого усилия - 150 тс. Несколько возрастают (до 100-120 мкм) радиальные вибрации ТП и биение вала (до 0,6-0,7 мм). Воздух с шумом засасывается под РК через штатный клапан на торце вала. Но его влияния на амплитудные и частотные характеристики динамических процессов при испытаниях до напора 190 м не замечено. Испытания при напоре 194 м показали, что при впуске воздуха под РК исчезают гидравлические удары в проточной части, уменьшается шум, а уровень динамических процессов, хотя несколько снижается, но остается недопустимо высоким».

Рис. 4.5.1. Эксплуатационная характеристика гидроагрегата с турбиной Р0230/833-В-677
Режим закрытия направляющего аппарата гидроагрегата.

На гидроагрегатах ГА №№ 1, 3, 4, 7, 8, 9, 10 регулирование положения направляющего аппарата производится с использованием колонки типа ЭГР-2И-10-7. Закрытие направляющего аппарата золотником аварийного закрытия (КАЗ) происходит от действия технологических защит, при неисправности электрогидравлического регулятора (далее – ЭГР), обрыве связи от промежуточного сервомотора. Дополнительно при обрыве троса обратной связи направляющий аппарат закрывается также при помощи груза, расположенного непосредственно в колонке регулирования. В случае затопления машинного зала и исчезновения напряжения в цепях защит, сигнализации и цепях управления алгоритм закрытия направляющего аппарата не действует.

На гидроагрегатах ГА №№ 2, 5, 6 регулирование положения направляющего аппарата производится с использованием колонки типа ЭГК-РО-6-1, установленных в 2009 году. Закрытие направляющего аппарата золотником аварийного закрытия (КАЗ) происходит от действия технологических защит, при неисправности электрогидравлического регулятора (далее – ЭГР), обрыве связи от промежуточного сервомотора.

Таким образом, независимо от типа установленных колонок регулирования, отсутствует алгоритм, обеспечивающий аварийное закрытие направляющего аппарата в случае потери электропитания.

Закрытие направляющего аппарата ГА-5 произошло после получения сигнала о неисправности ЭГР и сохранения напряжения в цепях управления.

Участие в регулировании мощности и частоты.

17.08.2009 напор станции составлял 212 метров. По эксплуатационной характеристике диапазон регулирования в зоне 1 был от 0 до 265 МВт,
а в зоне 3 от 570 до 640 МВт и имел величину 70 МВт. Зона 2, где эксплуатация не рекомендуется, имела границы от 265 МВт до 570 МВт и составляла 305 МВт. Таким образом, регулировочный диапазон агрегатов, находящихся в 3 зоне, при напоре 212 метров значительно меньше регулировочного диапазона в 1 зоне.

При напорах выше 197 метров незначительные изменения как плановой, так и внеплановой мощности приводят к необходимости перевода агрегатов через зону не рекомендуемой работы. Заводом-изготовителем турбины не установлены критерии и ограничения по прохождению через зону не рекомендуемой работы.

ГА-2 находился под управлением группового регулятора активной и реактивной мощности (ГРАРМ) и был определен персоналом станции приоритетным при исчерпании диапазонов регулирования.

Согласно графикам изменения плановой и внеплановой мощности плановая мощность станции в день до аварии изменилась 12 раз. В день аварии она уменьшалась в период с 00:00 до 2:30 с 4415 МВт до 2800 МВт, а с 4:12 до 7:05 преимущественно увеличивалась до 4100 МВт. Такое изменение плановой мощности привело к последовательному переходу ГА-2 шесть раз через зону не рекомендованной работы, с момента включения в работу (23 час. 14 мин. 16.08.09).

В общей сложности с момента выхода из ремонта гидроагрегат №2 находился в указанной зоне 210 раз, отработав в общей сложности 2520 секунд.
Данные по количеству переходов не рекомендуемой зоны (II зоны) в 2009 г. приведены в таблице:

<table>
<thead>
<tr>
<th>Месяц № п.п.</th>
<th>Январь</th>
<th>Февраль</th>
<th>Март</th>
<th>Апрель</th>
<th>Май</th>
<th>Июнь</th>
<th>Июль</th>
<th>Август</th>
<th>Количество за 8 месяцев</th>
</tr>
</thead>
<tbody>
<tr>
<td>ГА1</td>
<td>68</td>
<td>13</td>
<td>19</td>
<td>39</td>
<td>58</td>
<td>87</td>
<td>11</td>
<td>3</td>
<td>298</td>
</tr>
<tr>
<td>ГА2</td>
<td>22</td>
<td>0</td>
<td>41</td>
<td>36</td>
<td>40</td>
<td>28</td>
<td>32</td>
<td>33</td>
<td>232</td>
</tr>
<tr>
<td>ГА3</td>
<td>25</td>
<td>61</td>
<td>47</td>
<td>68</td>
<td>89</td>
<td>64</td>
<td>14</td>
<td>1</td>
<td>369</td>
</tr>
<tr>
<td>ГА4</td>
<td>91</td>
<td>59</td>
<td>43</td>
<td>50</td>
<td>60</td>
<td>101</td>
<td>40</td>
<td>46</td>
<td>490</td>
</tr>
<tr>
<td>ГА5</td>
<td>43</td>
<td>67</td>
<td>17</td>
<td>8</td>
<td>14</td>
<td>31</td>
<td>28</td>
<td>10</td>
<td>218</td>
</tr>
<tr>
<td>ГА6</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>ГА7</td>
<td>49</td>
<td>49</td>
<td>78</td>
<td>80</td>
<td>39</td>
<td>11</td>
<td>15</td>
<td>7</td>
<td>328</td>
</tr>
<tr>
<td>ГА8</td>
<td>14</td>
<td>22</td>
<td>47</td>
<td>37</td>
<td>21</td>
<td>19</td>
<td>35</td>
<td>14</td>
<td>209</td>
</tr>
<tr>
<td>ГА9</td>
<td>20</td>
<td>82</td>
<td>62</td>
<td>44</td>
<td>62</td>
<td>78</td>
<td>32</td>
<td>16</td>
<td>396</td>
</tr>
<tr>
<td>ГА10</td>
<td>2</td>
<td>2</td>
<td>12</td>
<td>20</td>
<td>33</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>78</td>
</tr>
</tbody>
</table>

Время нахождения агрегатов в не рекомендуемой зоне (II зоны)

<table>
<thead>
<tr>
<th>Месяц № п.п.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Время за 8 месяцев</th>
</tr>
</thead>
<tbody>
<tr>
<td>ГА1</td>
<td>816</td>
<td>156</td>
<td>228</td>
<td>468</td>
<td>696</td>
<td>1044</td>
<td>132</td>
<td>36</td>
<td>3576 (1 час)</td>
</tr>
<tr>
<td>ГА2</td>
<td>264</td>
<td>0</td>
<td>492</td>
<td>432</td>
<td>480</td>
<td>336</td>
<td>384</td>
<td>396</td>
<td>2784 (0 час 46 мин)</td>
</tr>
<tr>
<td>ГА3</td>
<td>300</td>
<td>732</td>
<td>564</td>
<td>816</td>
<td>1068</td>
<td>768</td>
<td>168</td>
<td>12</td>
<td>4428 (1 час 14 мин)</td>
</tr>
<tr>
<td>ГА4</td>
<td>1092</td>
<td>708</td>
<td>516</td>
<td>600</td>
<td>720</td>
<td>1212</td>
<td>480</td>
<td>552</td>
<td>5880 (1 час 38 мин)</td>
</tr>
<tr>
<td>ГА5</td>
<td>516</td>
<td>804</td>
<td>204</td>
<td>96</td>
<td>168</td>
<td>372</td>
<td>336</td>
<td>120</td>
<td>2616 (0 час 44 мин)</td>
</tr>
<tr>
<td>ГА6</td>
<td>120</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>120</td>
<td>240 (0 час 04 мин)</td>
</tr>
<tr>
<td>ГА7</td>
<td>588</td>
<td>588</td>
<td>936</td>
<td>960</td>
<td>468</td>
<td>132</td>
<td>180</td>
<td>84</td>
<td>3936 (1 час 06 мин)</td>
</tr>
<tr>
<td>ГА8</td>
<td>168</td>
<td>264</td>
<td>564</td>
<td>444</td>
<td>252</td>
<td>228</td>
<td>420</td>
<td>168</td>
<td>2508 (0 час 42 мин)</td>
</tr>
<tr>
<td>ГА9</td>
<td>240</td>
<td>984</td>
<td>744</td>
<td>528</td>
<td>744</td>
<td>936</td>
<td>384</td>
<td>192</td>
<td>4752 (1 час 19 мин)</td>
</tr>
<tr>
<td>ГА10</td>
<td>24</td>
<td>24</td>
<td>144</td>
<td>240</td>
<td>396</td>
<td>108</td>
<td>0</td>
<td>0</td>
<td>936 (0 час 15 мин)</td>
</tr>
</tbody>
</table>
Время работы гидроагрегатов СШГЭС в сети

<table>
<thead>
<tr>
<th>№ГА</th>
<th>2006 (час)</th>
<th>2007 (час)</th>
<th>2008 (час)</th>
<th>2009 (час)</th>
<th>Сумма (час)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5253,99</td>
<td>6065,43</td>
<td>6415,93</td>
<td>4253,75</td>
<td>21989,10</td>
</tr>
<tr>
<td>2</td>
<td>6157,78</td>
<td>4657,24</td>
<td>6498,58</td>
<td>3449,97</td>
<td>20763,57</td>
</tr>
<tr>
<td>3</td>
<td>5976,56</td>
<td>2322,24</td>
<td>2910,98</td>
<td>4003,09</td>
<td>15212,87</td>
</tr>
<tr>
<td>4</td>
<td>5794,30</td>
<td>6490,69</td>
<td>3278,15</td>
<td>4032,93</td>
<td>19596,07</td>
</tr>
<tr>
<td>5</td>
<td>5066,17</td>
<td>4476,21</td>
<td>6773,20</td>
<td>4271,46</td>
<td>20587,04</td>
</tr>
<tr>
<td>6</td>
<td>6657,31</td>
<td>4823,49</td>
<td>4222,59</td>
<td>96,76</td>
<td>15800,15</td>
</tr>
<tr>
<td>7</td>
<td>2727,54</td>
<td>6648,91</td>
<td>4317,50</td>
<td>4552,02</td>
<td>18245,97</td>
</tr>
<tr>
<td>8</td>
<td>7149,77</td>
<td>5141,05</td>
<td>4485,65</td>
<td>2730,33</td>
<td>19506,80</td>
</tr>
<tr>
<td>9</td>
<td>6276,99</td>
<td>5649,44</td>
<td>4258,03</td>
<td>4901,42</td>
<td>21085,88</td>
</tr>
<tr>
<td>10</td>
<td>1153,38</td>
<td>348,14</td>
<td>426,87</td>
<td>1826,60</td>
<td>3754,99</td>
</tr>
<tr>
<td>Сумма</td>
<td>52213,79</td>
<td>46622,84</td>
<td>43587,48</td>
<td>34118,33</td>
<td>176542,44</td>
</tr>
</tbody>
</table>

Организация контроля и оценки технического состояния оборудования.

Организация контроля и оценки технического состояния оборудования осуществляется согласно СТО 17330282.27.140.001-2006 «Методики оценки технического состояния основного оборудования гидроэлектростанций»; Утверждена и введена в действие Приказом РАО ЕЭС России от 13.05.2006 года №490. В 2008 году в ОАО «РусГидро» издан приказ «О присоединении к стандартам ОАО РАО «ЕЭС России» №752/1п-213 от 24.11.2008.

Согласно «Методики оценки технического состояния основного оборудования гидроэлектростанций» в разделе 8.5 «Крышка гидротурбины» п.8.5.3 сказано: «при постоянном контроле состояния крышки гидротурбины во время работы гидроагрегата фиксируют визуально и измеряют при помощи штатных и переносных измерительных средств состояние крепежа, закладных и крепежных элементов».
По результатам комплексных исследований элементов крепления крышки турбины, проведенных ОАО НПО «ЦНИИТМАШ»:

- обнаружены многочисленные дефекты в виде усталостных трещин на поверхности резьбовых канавок шпилек. Обнаруженные трещиноподобные дефекты характеризуются как недопустимые, поскольку являются очагами развития разрушения шпилек, снижают прочность и несущую способность этих деталей, а также, конструкции разъемного соединения в целом.

Вместе с тем, Инструкция по эксплуатации гидрооборудования СШГЭС (Инструкция по эксплуатации гидроагрегатов Саяно – Шушенской ГЭС, утверждена главным инженером филиала ОАО «РусГидро» - «Саяно – Шушенская ГЭС имени П.С. Непорожнего» от 18.05.2009 г.) предусматривает постоянный контроль технического состояния оборудования оперативно-ремонтным персоналом. Данный контроль не был организован должным образом.

Инструкцией по эксплуатации гидроагрегатов Саяно-Шушенской ГЭС, утвержденной главным инженером филиала ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего» от 18.05.2009 требования по контролю вибрации регламентированы п. 2.3.5. «Гидроагрегат должен быть разрушен или остановлен в срок, определяемый главным инженером гидроэлектростанции» при внезапном увеличении вибрации крышки турбины и верхней крестовины агрегата более 0,16 мм, боя вала более 0,5 мм, вал надставки более 0,55 мм».

По результатам вибрационных испытаний гидроагрегата № 2 от 12-16.03.2009 г., приведенных на страницах 41, следует, что агрегат эксплуатировался длительное время при размахе горизонтальной вибрации близкой к предельной, согласно п.3.3.12 ПТЭЭС и СРФ.

По данным анализа архивов АСУ ТП, проведенного в период с 21.04.2009 до 17.08.2009 наблюдался относительный рост вибрации турбинного подшипника ГА-2 примерно в 4 раза, что отражено графически.
В этой ситуации с целью обеспечения безопасной эксплуатации главный инженер СШГЭС (находившийся на станции с 06.35 17.08.2009 г.) должен был принять решение об остановке ГА-2 и исследовании причин вибрации. Вместо этого ГА-2 оставался приоритетным в ГРАРМ при регулировании мощности.

Система постенного контроля вибрации, уставленная на гидроагрегате №2, выполняла информационную задачу для эксплуатационного персонала, не имела блока спектрального анализа вибрации и быстродействующей буферной памяти для сохранения параметров вибрации при ненormальных режимах работы.
Состояние шпилек крепления крышки турбины гидроагрегата №2.

Авария на гидроагрегате № 2 (разрушение конкретного технического устройства) произошла в момент срыва крышки турбины вследствие излома шпилек крепления крышки. В результате визуального осмотра 49 шпилек крепления крышки турбины гидроагрегата № 2 в изломах шпилек выделены две зоны: зона усталостного излома и зона дополома (письмо 23.09.2009 г. № 04/23/- 2561 ВС ОАО НПО «ЦНИИТМАШ»):

41 шпилька разрушилась по резьбе при площадях усталостного излома:
- от 5 до 10% от общей площади сечения шпильки на 5 шпильках;
- от 20 до 30% от общей площади сечения шпильки на 3 шпильках;
- от 35 до 40% от общей площади сечения шпильки на 8 шпильках;
- от 50 до 55% от общей площади сечения шпильки на 6 шпильках;
- от 60 до 65% от общей площади сечения шпильки на 4 шпильках;
- 70 % от общей площади сечения шпильки на 3 шпильках;
- от 80 до 85% от общей площади сечения шпильки на 3 шпильках;
- от 90 до 95% от общей площади сечения шпильки на 6 шпильках;
- от 97 до 98% от общей площади сечения шпильки на 2 шпильках.
Две шпильки разрушились без признаков усталостного разрушения по механизму статического отрыва.

Остальные 6 шпилек имеют полную длину, резьба не сорвана, что может свидетельствовать об отсутствии на них гаек в момент срыва турбины. Длина не разрушенной шпильки составляет 245 мм и соответствует заданной по чертежу.

Таблица состояния шпилек:

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>№ шпильки</th>
<th>% усталостного излома</th>
<th>№ п/п</th>
<th>№ шпильки</th>
<th>% усталостного излома</th>
<th>№ п/п</th>
<th>№ шпильки</th>
<th>% усталостного излома</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>18</td>
<td>28</td>
<td>20</td>
<td>35</td>
<td>57</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>80</td>
<td>19</td>
<td>30</td>
<td>50</td>
<td>36</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>95</td>
<td>20</td>
<td>31</td>
<td>90</td>
<td>37</td>
<td>62</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>7</td>
<td>21</td>
<td>32</td>
<td>95</td>
<td>38</td>
<td>64</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>55</td>
<td>22</td>
<td>34</td>
<td>65</td>
<td>39</td>
<td>65</td>
<td>85</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>не разрушен</td>
<td>23</td>
<td>35</td>
<td>60</td>
<td>40</td>
<td>66</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>4</td>
<td>24</td>
<td>38</td>
<td>35</td>
<td>41</td>
<td>68</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>55</td>
<td>25</td>
<td>39</td>
<td>35</td>
<td>42</td>
<td>69</td>
<td>97</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>98</td>
<td>26</td>
<td>41</td>
<td>35</td>
<td>43</td>
<td>70</td>
<td>55</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
<td>95</td>
<td>27</td>
<td>42</td>
<td>35</td>
<td>44</td>
<td>71</td>
<td>не разрушен</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>85</td>
<td>28</td>
<td>43</td>
<td>не разрушен</td>
<td>45</td>
<td>73</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>21</td>
<td>5</td>
<td>29</td>
<td>44</td>
<td>95</td>
<td>46</td>
<td>74</td>
<td>0 (трещина нет)</td>
</tr>
<tr>
<td>13</td>
<td>22</td>
<td>35</td>
<td>30</td>
<td>45</td>
<td>35</td>
<td>47</td>
<td>75</td>
<td>70</td>
</tr>
<tr>
<td>14</td>
<td>23</td>
<td>0 (трещина нет)</td>
<td>31</td>
<td>47</td>
<td>не разрушен</td>
<td>48</td>
<td>76</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>24</td>
<td>50</td>
<td>32</td>
<td>48</td>
<td>95</td>
<td>49</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>16</td>
<td>25</td>
<td>40</td>
<td>33</td>
<td>53</td>
<td>не разрушен</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>27</td>
<td>50</td>
<td>34</td>
<td>54</td>
<td>не разрушен</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Среднее состояние площадей усталостного излома шпилек 64,9%
По результатам лабораторных исследований (заключение от 10.09.2009 № 60 ОАО НПО «ЦНИИТМАШ»), сделаны следующие выводы:

- по результатам капиллярной дефектоскопии обнаружены протяженные несплошности в виде трещин на витках резьбы. Обнаруженные дефекты являются недопустимыми.

- по результатам ультразвуковой дефектоскопии обнаружены недопустимые дефекты на витках резьбы шпилек (дефектов в металле шпилек вне резьбовой зоны не выявлено);

- результаты исследования химического состава образцов показали соответствие металла исследуемых шпилек стали 35 по ГОСТ 1050-88 и соответствуют требованиям ТУ 0300.056 "Сталь конструкционная сортовая термически обработанная";

- по результатам механических испытаний металл шпилек соответствует требованиям технических условий 0300.056 "Сталь конструкционная сортовая термически обработанная";

- микроструктура металла шпилек - феррит и пластинчатый перлит. Структурная полосчатость выражена слабо; основными видами неметаллических включений в металле являются деформированные сульфиды марганца, имеется незначительное содержание силикатов марганца, оксидов сложного состава и нитридов титана; микроструктура металла шпилек признаков браковки не имеет;

- макрорельеф поверхности излома шпилек является характерным для области развития усталостной трещины. Зарождение усталостной трещины (многоочаговое) происходило от внешнего концентратора - кольцевой резьбовой канавки. На поверхности усталостного разрушения выделяется ряд макрообластей, границы которых идентифицируются как следы продвижения фронта усталостной трещины.
Основные результаты экспертизы и выводы:

1. Химический состав металла шпилек соответствует стали 35 по ГОСТ 1050-88 и требованиям ТУ 0300.056 "Сталь конструкционная сортовая термически обработанная". Микроструктура металла шпилек характерна для углеродистой стали с содержанием углерода 0,3 - 0,4% и браковочных признаков не имеет.

2. Механические свойства металла шпилек соответствуют требованиям технических условий 0300.056 "Сталь конструкционная сортовая термически обработанная".

3. По результатам неразрушающего контроля обнаружены многочисленные дефекты в виде усталостных трещин на поверхности резьбовых канавок шпилек. Обнаруженные трещиноподобные дефекты характеризуются как недопустимые, поскольку являются очагами развития разрушения шпилек, ограничивают прочность и несущую способность этих деталей, а также конструкции разъемного соединения в целом.

4. По результатам комплексных исследований основной причиной разрушения шпилек является развитие усталостных трещин, зарождение которых происходило с внутренней поверхности резьбовой канавки. Размер области развития усталостных трещин до момента статического долома для исследованных шпилек изменяется в широком диапазоне вплоть до 95% от общей площади поверхности разрушения, т.е. практически до полной потери несущей способности шпилек.

Одним из факторов, способствующих развитию дефекта в шпильках крепления крышки турбины на ГА-2, является значительное количество переходных режимов работы гидроагрегата в не рекомендуемых для эксплуатации зонах с повышенными динамическими характеристиками (вибрациями), в зависимости от мощности при участии гидроэлектростанции (и гидроагрегатов) в системном регулировании активной мощности и частоты. Установленный заводом-изготовителем срок службы крепежа (шпилек) совпадает со сроком службы самого оборудования (30 лет).
5. Описание возникновения аварии, ее развития.

Авария — это разрушение сооружений и (или) технических устройств, применяемых на опасном производственном объекте (116 - ФЗ «О промышленной безопасности опасных производственных объектов» 21 июля 1997г.).

17.08.2009 ГА-2 работал под нагрузкой, ротор вращался с номинальной частотой. С 08.12 происходило снижение мощности гидроагрегата № 2 по заданию автоматической системы регулирования мощности АРЧМ-ГРПМ. При входе в зону эксплуатационной характеристики гидроагрегата, не рекомендованной к работе, произошел обрыв шпилек крышки турбины Под воздействием давления воды в гидроагрегате ротор гидроагрегата с крышкой турбины и верхней крестовиной начал движение вверх и, вследствие разгерметизации, вода начала заполнять объем шахты турбины, воздействуя на элементы генератора. (Рабочая документация гидроагрегатов не предусматривает стопорения гаек на шпильках. Письмо СШГЭС от 27.09.2009 №001/2438 подписанное Директором А.В. Кяри).

При выходе обода рабочего колеса на отметку 314,6 рабочее колесо перешло в насосный режим и за счет запасенной энергии ротора генератора создало избыточное давление на входных кромках лопастей рабочего колеса, что привело к обрыву перьев лопаток направляющего аппарата. Через освободившуюся шахту ГА-2 вода начала поступать в машинный зал станции.

Машинный зал был затоплен до отметки 335,0. От действия напора воды вращающейся крестовины и ротора генератора ГА-2 было разрушено здание машинного зала в зоне гидроагрегатов ГА - 2, 3 и 4 (стены, перекрытия, остекление и 4-ая опора подкранового пути со стороны верхнего бьефа) верхней отметки блока ГА-2. Полностью повреждены
силовые щиты, шкафы управления, вторичная коммутация и цепи управления, сосуды маслозвукоздые, сосуды воздушные. Лифты пассажирские разрушены полностью.

Повреждены порталы 500 кВ 1-го и 2-го трансформаторов 15,75/500 кВ, токопроводы 15,75 кВ трансформаторов 1, 2 и 3.

Затоплены гидроагрегаты №№ 1-10. От действия воды произошли короткие замыкания обмоток работающих гидрогенераторов №№ 1, 3-5, 7-10. Гидрогенераторы получили повреждения различной степени. Разрушены блоки гидроагрегатов 7 и 9.

По материалам протоколов опроса оперативного персонала и трендов по ГА-2 установлено, что 17.08.2009 в 8 ч. 13 мин. местного времени персонал, находившийся в машинном зале, услышал громкий хлопок в районе гидроагрегата № 2 и увидел выброс столба воды. На Центральном пульте управления сработала светозвуковая сигнализация, пропали оперативная связь, электропитание освещения, автоматики, сигнализации, защит и приборов. Через окно ЦПУ персонал зафиксировал, что из здания машинного зала идет поток воды, несколько пролетов здания разрушено. Произошел сброс нагрузки с 4100 МВт до 0 МВт с полной потерей собственных нужд СШГЭС и затоплением машинного зала.

5.1 Перечень и характер разрушений технических устройств, оборудования, зданий эксплуатируемых на опасном производственном объекте филиала «РусГидро» Саяно-Шушенская ГЭС им. П.С.Непорожнего.

Данный перечень разрушений сформирован на основании визуальных осмотров и дефектационных ведомостей.

Гидроагрегаты:

ГА-1 - повреждены обмотки ротора и статора генератора, кольца и щетки вспомогательного генератора, шкафы управления, вторичные цепи и
цепи управления, главный выключатель генератора, токопроводы 15,75 кВ, «0» выводы.

ГА-2 - полностью разрушен и выброшен из шахты, разрушены обмотки ротора и статора, полностью разрушены шахта агрегата и статорной обмотки, крестовина, вспомогательный генератор, главный выключатель генератора, токопроводы 15,75 кВ, «0» выводы, вспомогательное оборудование, вторичные цепи и цепи управления.

Сосуд масловооздушный:

Рег. №350-ХА, Зав. №39205-3 - многочисленные вмятины, оторваны патрубки.

Сосуд воздушный:

Рег. №351-ХА, Зав. №39204-4 - многочисленные вмятины, оторваны патрубки.

ГА-3 - повреждены обмотки ротора и статора генератора, вспомогательное оборудование, шкафы управления, вторичные цепи и цепи управления, главный выключатель генератора, токопроводы 15,75 кВ, «0» выводы. Произошла деформация обмотки статора главного генератора.

ГА-4 - повреждены обмотки ротора и статора генератора, щеточный аппарат, вспомогательное оборудование, шкафы управления, вторичные цепи и цепи управления, главный выключатель генератора, частично токопроводы 15,75 кВ, «0» выводы. Котлы МНУ имеют следы механических повреждений.

ГА-5 - повреждено вспомогательное оборудование, насосы МНУ сорваны, повреждены вторичные цепи и цепи управления, частично главный выключатель генератора, шкафы управления.

ГА-6 - повреждены вспомогательное оборудование, шкафы управления, вторичные цепи и цепи управления.

ГА-7 - разрушены статор генератора, крестовина, система регулирования турбины, котлы МНУ, система водяного охлаждения
генератора, вторичные цепи и цепи управления; повреждены обмотки ротора, вспомогательный генератор, кольца ротора, главный выключатель генератора, «0» выводы, вспомогательное оборудование.

Сосуд масловойдущий:
Рег. №360-ХА, Зав. №44180-13 - многочисленные вмятины, оторваны патрубки.

Сосуд воздушный:
Рег. №361-ХА, Зав. №44570-14 - многочисленные вмятины, оторваны патрубки.

ГА-8 - повреждены обмотки ротора и статора генератора, статор регуляторного генератора, трансформатор системы возбуждения, вспомогательное оборудование, шкафы управления, вторичные цепи и цепи управления, частично главный выключатель генератора.

ГА-9 - разрушены статор генератора, крестовина; повреждены маслонапорная установка, вспомогательное оборудование, шкафы управления, вторичные цепи и цепи управления.

Сосуд масловойдущий:
Рег. №364-ХА, Зав. №46909-17 - многочисленные вмятины, оторваны патрубки.

Сосуд воздушный:
Рег. №365-ХА, Зав. №46910-18 - многочисленные вмятины, оторваны патрубки.

ГА-10- повреждены обмотки ротора и статора генератора; крестовина, фиксирующая подшипник генератора, повернута на полметра; повреждены главный выключатель генератора, вспомогательное оборудование, вторичные цепи и цепи управления.
Здания и сооружения:

Разрушены перекрытия отметки 327,0 м в районе гидроагрегатов ГА-2, ГА-7 и ГА-9. Имеет разрушения несовместимые с дальнейшей эксплуатацией 4-я колонна, поддерживающая подкрановую балку со стороны верхнего бьефа.

Полностью разрушено верхнее строение машинного зала (типа МАрХИ) в зоне гидроагрегатов ГА-2, ГА-3 и ГА-4. Верхнее строение машинного зала в районах монтажной площадки, ГА-1 и ГА-5 имеет серьезные повреждения, практически полностью отсутствует остекление.

Разрушены перегородки и кирпичные стены помещений главных выключателей генераторов, помещений «0» выводов и т.д. на отметке 320,0 м.

Трансформаторная зона:

T1 фаза А. Отсутствует масло в расширителе и газовом реле. Погнута токоведущая шпилька верхнего узла ввода. Погнут и разгерметизирован газоразвод на крышке бака.

T1 фаза В. Отсутствует масло в расширителе и газовом реле. Ввод 500 кВ имеет сколы верхней покрышки, погнута токоведущая шпилька верхнего узла ввода. Погнут и разгерметизирован газоразвод на крыше бака.

T1 фаза С. Снят с фундамента и перемещен в ТМХ. Деформирован расширитель и его крепления. Повреждена система охлаждения. Поврежден ввод 500 кВ, разрушен ввод нейтрали. Погнуты и порваны трубы газоразвода на крышке бака. Бак трансформатора практически без масла, масло только в поддоне.

T21. Снят с фундамента и перевезен на ОРУ-500 кВ. Повреждены вводы, один из радиаторов, в крышке РПН пробито отверстие.

T2 фаза А. Отсутствует масло в расширителе и газовом реле. Ввод 500 кВ (АВВ) полностью разрушен, линейный отвод оторван от обмотки.
Разрушен и отсутствует ввод нейтрали. Погнут и разгерметизирован газоразвод на крышке бака.

Т2 фаза В. Деформирован расширитель и его крепления. Отсутствует масло в расширителе и газовом реле, уровень масла в баке на середине его высоты. Ввод 500 кВ находится возле трансформатора. Разрушен и отсутствует ввод нейтрали. Повреждена система охлаждения, разрушен корпус одной из магистральных задвижек. Погнуты и в нескольких местах порваны трубы газоразвода на крышке бака.

Т2 фаза С. Отсутствует масло в расширителе и газовом реле. Ввод 500 кВ (ABB) находится на месте, имеет сколы фарфора верхней покрышки. Ввод нейтрали разрушен и отсутствует. Погнут и разгерметизирован газоразвод на крыше бака.

Т3 фаза А. Видимых повреждений нет, имеются следы незначительной протечки масла на коробках НН.

Грузоподъемное оборудование и лифты:

Кран полукозловой г/п 500/100х10, рег. № 68 хкр, зав. № 22. Залиты водой три электродвигателя.

Кран полукозловой г/п 500/100х10, рег. № 59 хкр, зав. № 23. Залиты водой три электродвигателя.

Лифт пассажирский типа П320, Рег.№661 ХЛ, Зав.№61751 – полностью разрушен.

Лифт пассажирский типа П500, Рег.№655 ХЛ, Зав.№823М-81 - полностью разрушен.

Лифт пассажирский типа П320, Рег.№658 ХЛ, Зав.№4660 - полностью разрушен.

Лифт пассажирский типа П320, Рег.№651 ХЛ, Зав.№4658 - полностью разрушен.

Лифт пассажирский типа П320, Рег.№648 ХЛ, Зав.№4823 - полностью
разрушен.

Лифт грузовой типа П3200, Рег.№656 ХЛ, Зав.№1120СВ-81 - полностью разрушен.

5.2 Операции по закрытию затворов.

С 8 час. 35 мин. и не позже 09 час. 30 мин. в ручном режиме персоналом станции были закрыты аварийные затворы напорных водоводов.

17.08.2009 в 8.13.25 (время местное)

ВБ=537,11 м НБ=325,07 м H=212,04 м

<table>
<thead>
<tr>
<th>Затвор</th>
</tr>
</thead>
<tbody>
<tr>
<td>ГА-1</td>
<td>ГА-2</td>
<td>ГА-3</td>
<td>ГА-4</td>
<td>ГА-5</td>
<td>ГА-6</td>
<td>ГА-7</td>
<td>ГА-8</td>
<td>ГА-9</td>
<td>ГА-10</td>
</tr>
<tr>
<td>открыт</td>
<td>открыт</td>
<td>открыт</td>
<td>открыт</td>
<td>открыт</td>
<td>закрыт</td>
<td>открыт</td>
<td>открыт</td>
<td>открыт</td>
<td>открыт</td>
</tr>
<tr>
<td>Q=298</td>
<td>Q=256</td>
<td>Q=298</td>
<td>Q=302,5</td>
<td></td>
<td>Q=0</td>
<td>Q=75</td>
<td>Q=305</td>
<td>Q=298</td>
<td>Q=83</td>
</tr>
<tr>
<td>м³/сек</td>
<td>м³/сек</td>
<td>м³/сек</td>
<td>м³/сек</td>
<td></td>
<td>м³/сек</td>
<td>м³/сек</td>
<td>м³/сек</td>
<td>м³/сек</td>
<td>м³/сек</td>
</tr>
</tbody>
</table>

8.35-8.40 (время местное)

ВБ=537,11 м НБ=325,07 м H=212,04 м

<table>
<thead>
<tr>
<th>Затвор</th>
</tr>
</thead>
<tbody>
<tr>
<td>ГА-1</td>
<td>ГА-2</td>
<td>ГА-3</td>
<td>ГА-4</td>
<td>ГА-5</td>
<td>ГА-6</td>
<td>ГА-7</td>
<td>ГА-8</td>
<td>ГА-9</td>
<td>ГА-10</td>
</tr>
<tr>
<td>закрыт</td>
<td>открыт</td>
<td>открыт</td>
<td>открыт</td>
<td>открыт</td>
<td>закрыт</td>
<td>открыт</td>
<td>открыт</td>
<td>открыт</td>
<td>открыт</td>
</tr>
<tr>
<td>Q=0</td>
<td>Q>340</td>
<td>Q>298</td>
<td>Q>302,5</td>
<td>Q=0</td>
<td>Q>302,5</td>
<td>Q>298</td>
<td>Q>298</td>
<td>Q>83</td>
<td></td>
</tr>
<tr>
<td>м³/сек</td>
</tr>
</tbody>
</table>
8.40-9.30 (время местное)

<table>
<thead>
<tr>
<th>Расход</th>
<th>Затвор ГА-1</th>
<th>Затвор ГА-2</th>
<th>Затвор ГА-3</th>
<th>Затвор ГА-4</th>
<th>Затвор ГА-5</th>
<th>Затвор ГА-6</th>
<th>Затвор ГА-7</th>
<th>Затвор ГА-8</th>
<th>Затвор ГА-9</th>
<th>Затвор ГА-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 час. 40 мин.</td>
<td>закрыт</td>
<td>закрыт</td>
<td>закрыт</td>
<td>закрыт</td>
<td>закрыт</td>
<td>закрыт</td>
<td>закрыт</td>
<td>закрыт</td>
<td>закрыт</td>
<td>9 час. 30 мин.</td>
</tr>
<tr>
<td>Q=0 м³/сек</td>
</tr>
</tbody>
</table>

В 11 час. 32 мин. был запитан от постороннего источника питания (дизельной электростанции) козловый кран, расположенный на гребне плотины и в 11 час. 50 мин. начато открытие затворов водосбросных отверстий для уравновешивания притока и оттока воды из водохранилища и осуществление попуска воды в нижний бьеф СШГЭС (р. Енисей).

В результате аварии произошел выброс технических масел в машинный зал СШГЭС и реку Енисей в объеме ориентировочно 100 т.

Подробный сценарий развития аварии на СШГЭС 17.08.2009 приведен в заключении экспертной комиссии по расследованию причин аварии (материалы экспертной комиссии, папка № 4.).

5.3. Действия руководства и оперативного персонала СШГЭС

5.3.1 Действия персонала в условиях чрезвычайной ситуации техногенного характера

В филиале ОАО «РусГидро» «Саяно-Шушенская ГЭС имени П.С. Непорожнего» разработан план действий по предупреждению и ликвидации чрезвычайных ситуаций природного и техногенного характера (План).

Вместе с тем, содержание Плана не предусматривало действий по сценарию случившейся аварии. Тренировок персонала на случай затопления зданий СШГЭС не проводилось.

В плане не учитывался персонал подрядных организаций, производящих обслуживание и ремонт оборудования, зданий и сооружений СШГЭС, в том числе на этажах здания ГЭС ниже отметки уровня воды в нижнем бьефе. Не были предусмотрены, согласованные с подрядчиком мероприятия по экстренному выводу работников из зданий и сооружений ГЭС на безопасные площадки.

В письме директора СШГЭС от 05.09.2009 № 018/1949 на имя заместителя председателя комиссии Ростехнадзора «О ликвидации ЧС» было дано пояснение, что «для оперативного выполнения поставленных задач и в целях экономии времени все указания и распоряжения председателем КАЧС СШГЭС отдавались в устной форме».

Порядок действий должностных лиц по сложившейся чрезвычайной ситуации на СШГЭС не разработан и не утвержден.

Оперативный журнал действий при ликвидации аварии 17.08.2009 не велся.
5.3.2 Действия руководства и оперативного персонала до 08.13 17.09.2009г.

С 20 час. 00 мин. 16.08.2009 до 8 час. 00 мин. 17.08.2009 в соответствии с графиком работы оперативного персонала на август 2009 года, утвержденным главным инженером филиала ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего» А.Н.Митрофановым, оперативное управление станцией осуществлялось «Вахтой В» в соответствии с утвержденным списком персонала ОС по вахтам на август 2009 года в составе:

1. Начальник смены станции Сыроветников Г.А.
2. Дублер начальника смены станции Кузнецов В.Л.
3. Инженер центрального пульта управления Баландина А.О.
4. Начальник смены машинного зала Жданов Г.К.
5. Старший дежурный машинист Пономарев В.И.
6. Дежурный машинист Туркин А.А.
7. Дежурный машинист Чильчигашев Д.И.
8. Дежурный машинист Мальцев А.Ю.
9. Начальник смены цеха Майнского гидроузла Катайцев В.Н.
10. Дежурный машинист Баринов В.А.
11. Дежурный инженер пульта ОРУ-500 Тараканов Д.В.
12. Дежурный электромонтер ОРУ – 500 Борзов В.А.

С 8 час. 00 мин. 17.08.2009 оперативное управление осуществляла Вахта «Г»:

1. Начальник смены станции Нефедов М.Г.
2. Инженер центрального пульта управления Мисюкович Л.М.
3. Дежурный инженер ОРУ-500 кВ Килевой Ю.А.
4. Дежурный электромонтер ОРУ – 500 кВ Гладких В.А.
5. Начальник смены машинного зала Лалько А.Е.
6. Старший дежурный машинист Третьяков Н.Н.
7. Дежурный машинист Мякишев О.А.
8. Дежурный машинист Жданов В.А.
9. Дежурный машинист Гулина В.И.
10. Начальник смены цеха Майнского гидроузла Комиссаров А.А.
11. Дежурный машинист Катайцев А.В.
12. Дублер начальника смены станции после отпуска Бернякович А.В.
13. Начальника смены станции Сергиенко В.С. (резерв 8 ч.).
14. Дежурный машинист Майнского гидроузла Лебедев С.В.

Помимо оперативного персонала станции на различных отметках находился персонал подрядных организаций (данные по персоналу приведены в таблице).

Таблица нахождения персонала на отметках машзала в 8 час. 13 мин.

<table>
<thead>
<tr>
<th>Число человек</th>
<th>Организация</th>
<th>Отметка</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 человек</td>
<td>ООО «Авангард»</td>
<td>Крыша машзала отм. 354</td>
</tr>
<tr>
<td>29 человек</td>
<td>ОАО «Саяно-Шушенский Гидроэнергоремонт»</td>
<td>Пол машзала отм. 327</td>
</tr>
<tr>
<td>7 человек</td>
<td>филиал ОАО «РусГидро» - «Саяно-Шушенская ГЭС им. П. С. Непорожнего»</td>
<td></td>
</tr>
<tr>
<td>8 человек</td>
<td>ООО «Ротекс»</td>
<td></td>
</tr>
<tr>
<td>6 человек</td>
<td>ООО «Авангард»</td>
<td></td>
</tr>
<tr>
<td>2 человека</td>
<td>ООО «Технострой»</td>
<td></td>
</tr>
<tr>
<td>Итого: 52 человека</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 человек</td>
<td>ОАО «Саяно-Шушенский Гидроэнергоремонт»</td>
<td>отм. 320</td>
</tr>
<tr>
<td>8 человек</td>
<td>филиал ОАО «РусГидро» - «Саяно-Шушенская ГЭС им. П. С. Непорожнего»</td>
<td></td>
</tr>
<tr>
<td>2 человека</td>
<td>ООО «Технострой»</td>
<td></td>
</tr>
<tr>
<td>Итого: 41 человек</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 человека</td>
<td>ОАО «Саяно-Шушенский Гидроэнергоремонт»</td>
<td>отм. 315</td>
</tr>
<tr>
<td>Итого: 22 человека</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Главный инженер СШГЭС с 06 часов 35 мин. 17.08.2009 находился на станции в своем рабочем кабинете и принимал доклады от начальников служб.

Состав смены находился на своих рабочих местах. Со слов инженера центрального пульта управления Мисюкович Л.М.(протокол опроса 18.08.2009), в 8 часов 05 минут отключился групповой регулятор реактивной мощности (ГРРМ – подсистема, работающая в составе ГРАРМ) и напряжение на нем показывало 526-527 кВ, при этом показания на программном модуле задатчика внеплановой мощности (ЗВМ) соответствовали 176 МВт. В момент осмотра ЗВМ в 8 часов 00 минут показания соответствовали - 300 МВт.

В 8 часов 06 минут Мисюкович Л.М. подошла к пульту управления и снизила на каждом агрегате реактивную нагрузку (Повернула ключи реактивной мощности против часовой стрелки вместе на 9 и 10 агрегате, затем на 7 и 8 агрегате, затем на 5 агрегате. 6-й агрегат находился в ремонте. Снизила реактивную нагрузку на 3 и 4 агрегате и затем на 1 и 2 агрегатах). Напряжение на шинах снизилось до 525-524 кВ. Действия Мисюкович Л.М. соответствуют инструкции по эксплуатации системы группового регулирования активной и реактивной мощности (ГРАРМ) гидроагрегатов СШГЭС утвержденной главным инженером СШГЭС Митрофановым 24.02.2009г.

После этого доложила начальнику смены станции, что можно вводить ГРРМ. Начальник смены станции Нефедов М.Г. ввел его в работу.

В 8 час. 07 мин. все показания приборов были в норме, сигналов о неисправности не было.

Со слов старшего машиниста Третьякова Н.Н. (протокол опроса от 18.08.2009), он находился в помещении оперативного персонала в помещении машинного зала и осуществлял допуск сотрудника СШГЭС, слесаря Шинкаренко Ю.Л. для работ. Характер работ – замена датчиков засоренных фильтров на ГА-10 и ГА-6. В этот момент ничего необычного не
заметил. Весь персонал машинного зала занимался оформлением документов по работам подрядных организаций.

По показаниям монтажника ООО ПСК «Авангард», г. Новосибирск, Марар П.И., в 8 часов 00 минут он находился на крыше монтажной площадки машинного зала для проведения работ по монтажу вентиляции. Получил разнарядку от бригадира. В этот момент началась легкая вибрация крыши машинного зала. Поначалу не придал этому значения. Затем вибрация усилилась, переросла в грохот. Затем огромный всплеск воды в сторону трансформаторов из помещения машинного зала, сопровождавшийся скрежетом металла и треском короткого замыкания. При усиливающихся всплесках воды и грохота происходило обрушение кровли машинного зала в районе 1-3 агрегатов.

5.3.3 Действия руководства и оперативного персонала после 08.13 17.09.2009г.

На момент аварии директор СШГЭС Неволько Н.И. и начальник службы экономической безопасности и режима Шевченко Т.В. на станции отсутствовали.

Исполняющий обязанности начальника штаба ГО и ЧС Чиглинцев М.И., начальник службы мониторинга оборудования Матвиенко А.В., начальник службы надежности и техники безопасности Чуричков Н.В. покинули территорию станции во время аварии.

Главный инженер СШГЭС Митрофанов А.Н., по его словам, услышав грохот и шум, прибыл на ЦПУ (центральный пункт управления СШГЭС, расположенный на 4 этаже блока «А») в соответствии с «Инструкцией по предотвращению и ликвидации технологических нарушений на гидромеханическом оборудовании Саяно-Шушенской ГЭС».

Митрофанов А.Н., доложил по сотовому телефону директору по эксплуатации - заместителю руководителя бизнес единицы
«Производства» по ОАО «РусГидро» - Юсупову Т.М. об аварии, отдал распоряжение на закрытие аварийно-ремонтных затворов начальнику смены станции Нефедову М.Г., который находился на ЦПУ.

При отсутствии связи с 8 часов 13 минут с ЦПУ никакие команды персоналу станции никто не давал. Со слов персонала, все попытки связи по сотовому телефону были безуспешными.

По материалам опроса главного инженера СШГЭС Митрофанова А.Н. и начальника смены Нефедова М.Г., в 8 часов 30-35 минут на сотовый телефон ЦПУ поступил звонок от заместителя начальника турбинного цеха Е.В. Кондратцева. Он спросил, что нужно делать, и нужна ли помощь. Также он сказал, что на гидроподъемниках (гребень плотины) находится старший дежурный машинист Третьяков Н.Н. Через Кондратцева Е.В. начальник смены станции Нефедов М.Г. передал распоряжение старшему дежурному машинисту Третьякову Н.Н. на сброс аварийно-ремонтных затворов верхнего бьефа. Затворы окончательно были закрыты не позднее 09 час. 30 мин. 17.08.2009. Сброс аварийных затворов в ручном режиме осуществляли Катайцев А.В., Кондратцев Е.В., Багаутдинов И.М., Майорошин П.А. и Третьяков Н.Н.

По прибытии на ЦПУ заместителя главного инженера Шерварли Е.И. главный инженер Митрофанов А.Н. отдал ему распоряжение отправиться на ОРУ-500 и принять меры к восстановлению собственных нужд станции.

5.3.4 Погибшие и пострадавшие, по состоянию на 25.09.2009.

Авария сопровождалась многочисленными человеческими жертвами (75 погибших, 13 пострадавших). На момент аварии на территории СШГЭС находилось около 300 человек, включая ремонтный и привлеченный персонал.
Погибшие.
Филиал ОАО «Рус-Гидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего»:

1. Богоявленский Е.М., электролесарь – обнаружен около грузового и пассажирского лифта в машинном зале на отметке между 315 и 320.

2. Ермольев Д.Л., ведущий инженер – обнаружен в районе грузового лифта СШГЭС между отметками 315 и 320.

3. Качан А.И., инженер – обнаружен в районе сливов под машинным залом между ГА-6 и ГА-7 на отметке 327.

4. Куприянов С.Ю., слесарь – обнаружен на площадке турбинно-масляного хозяйства верхнего бьефа машинного зала на отметке 310.

5. Лыстро А.Е., начальник смены машинного зала – обнаружен в правом крыле машинного зала со стороны верхнего бьефа на отметке 310.

6. Нелидов С.Н., электролесарь – обнаружен около ГА-7 на отметке 310.

7. Новиков И.И., электролесарь – обнаружен в шахте турбинного цеха ГА-6 под рифленым перекрытием пола на отметке 327.

8. Поленок Н.П., ведущий инженер – обнаружен в помещении гидроагрегатов с 6 по 10, на отметке 310.

9. Уткин А.В., ведущий инженер – обнаружен около ГА-8 на отметке 323;

10. Жданов В.А., машинист ГА. – обнаружен в здании станции со стороны нижнего бьефа.

ОАО «Саяно-Шушенский Гидроэнергопромонт»:

11. Аксенов А.Г., слесарь – обнаружен в компрессорном здании машинного зала на отметке 310.

12. Анисимов В.В., слесарь – обнаружен в компрессорном отделении блока № 1 монтажной площадки на отметке 327.
13. Алимов В.Н., электрослесарь – обнаружен около грузового и пассажирского лифта в машинном зале, на отметке между 315 и 320.

14. Аршевский В.П., уборщик – обнаружена на площадке турбинно-масляного хозяйства машинного зала со стороны верхнего бьефа, на отметке 310.

15. Бурлакова Н.И., уборщик – обнаружена до прибытия следственной группы на начальном этапе поисково-спасательных работ.

17. Биттель Л.Н., уборщица – обнаружена в районе ГА-6 на отметке 310.

18. Безруков А.Н., электрогазосварщик – обнаружен около грузового и пассажирского лифта в машинном зале на отметке между 315 и 320.

19. Вакушин Ю.А., слесарь – обнаружен в помещении на отметке 310.

20. Васильянский В.А., слесарь – обнаружен до прибытия следственной группы на начальном этапе поисково-спасательных работ.

21. Воскресенский Ф.В., электрослесарь – обнаружен около грузового и пассажирского лифта в машинном зале на отметке между 315 и 320.

22. Воскресенский В.В., электрослесарь – обнаружен около грузового и пассажирского лифта в машинном зале на отметке между 315 и 320.

23. Васильева Т.В., маляр – обнаружена на площадке турбинно-масляного хозяйства машинного зала со стороны верхнего бьефа на отметке 310.

24. Габрат Н.А., токарь – обнаружен на площадке турбинно-масляного хозяйства машинного зала со стороны верхнего бьефа на отметке 310.
25. Горявин Е.С., электрослесарь — обнаружен до прибытия следственной группы на начальном этапе поисково-спасательных работ.
26. Гоян Д.П., маляр — обнаружен до прибытия следственной группы на начальном этапе поисково-спасательных работ.
27. Гусельников П.Н., слесарь — обнаружен в компрессорном здании машинного зала на отметке 310.
28. Глагольев В.И., маляр — обнаружен около грузового и пассажирского лифта в машинном зале на отметке между 315 и 320.
29. Дубов А.В., слесарь — обнаружен около грузового и пассажирского лифта в машинном зале на отметке 315 и 320.
30. Дугина Л.Н., уборщик — обнаружена в районе 10 метров ГА-6 на отметке 315 по коридору.
31. Ермилов И.С., слесарь — обнаружен около грузового и пассажирского лифта в машинном зале на отметке между 315 и 320.
32. Жолобова И.В., маляр — обнаружена до прибытия следственной группы на начальном этапе поисково-спасательных работ.
33. Жуликов И.А., электрослесарь — обнаружен до прибытия следственной группы на начальном этапе поисково-спасательных работ.
34. Жарова Н.А., уборщик — обнаружена на отметке 323 машинного зала.
35. Земцов Ю.Л., слесарь — обнаружен до прибытия следственной группы на начальном этапе поисково-спасательных работ.
36. Заворин А.В., слесарь — обнаружен в районе ГА-2 на отметке 305,75.
37. Ивашкин В.В., аккумуляторщик — обнаружен до прибытия следственной группы на начальном этапе поисково-спасательных работ.
38. Иконникова С.Э., уборщик — обнаружена в районе туалетной комнаты на отметке 315.
39. Иконникова Е.Л., уборщик — обнаружена в районе ГА-6 на
отметке 310.

40. Калинин В.А., маляр — обнаружен на площадке турбинно-масляного хозяйства машинного зала со стороны верхнего бьефа на отметке 310.

41. Колесниченко Д.В., электрослесарь — обнаружен до прибытия следственной группы на начальном этапе поисково-спасательных работ.

42. Куприянов В.В., слесарь — обнаружен около грузового и пассажирского лифта в машинном зале на отметке между 315 и 320.

43. Карпов С.Г., электрогазосварщик — обнаружен около грузового и пассажирского лифта в машинном зале на отметке между 315 и 320.

44. Кытманов А.И., слесарь — обнаружен около грузового и пассажирского лифта в машинном зале на отметке 315 и 320.

45. Коршунов А.Е., электрослесарь — обнаружен по коридору камеры охлаждения ГА-6 под рифленым перекрытием пола на отметке 320.

46. Коршунов В.Е., мастер — обнаружен на площадке турбинно-масляного хозяйства машинного зала со стороны верхнего бьефа на отметке 310.

47. Кузеванова Л.А., маляр — обнаружена на площадке турбинно-масляного хозяйства машинного зала со стороны верхнего бьефа на отметке 310.

48. Клюкач Е.А., уборщик — обнаружена в правом крыле машинного зала со стороны верхнего бьефа на отметке 327.

49. Линейских А.Н., старший мастер — обнаружен до прибытия следственной группы на начальном этапе поисково-спасательных работ.

50. Малик А.И., мастер — обнаружен около грузового и пассажирского лифта в машинном зале на отметке между 315 и 320.

51. Мезенцев В.К., слесарь — обнаружен в районе ГА-8 на отметке 305,75.

52. Мингазова Е.М., маляр — обнаружена на площадке турбинно-
малянного хозяйства машинного зала со стороны верхнего бьефа, на отметке 310.

53. Осинцева В.В., уборщик — обнаружена на площадке турбинно-
малянного хозяйства машинного зала со стороны верхнего бьефа на отметке 310.

54. Овчинников В.О., слесарь — обнаружен около грузового и
пассажирского лифта в машинном зале на отметке между 315 и 320.

55. Петров С.А., слесарь — обнаружен около грузового и
пассажирского лифта в машинном зале на отметке между 315 и 320.

56. Пузаков А.И., слесарь — обнаружен около грузового и
пассажирского лифта в машинном зале на отметке между 315 и 320.

57. Романюк М.А., мастер — обнаружен около грузового и
пассажирского лифта в машинном зале на отметке между 315 и 320.

58. Семкина Н.Н., маляр — обнаружена на площадке турбинно-
малянного хозяйства машинного зала со стороны верхнего бьефа на отметке 310.

59. Синякский Д.Г., электрогазосварщик — обнаружен около
грузового и пассажирского лифта в машинном зале на отметке между 315 и
320.

60. Сисецкий В.В., электрогазосварщик — обнаружен в правом крыле
верхнего бьефа машинного зала на отметке 327.

61. Темирбулатов П.С., токарь — обнаружен на площадке турбинно-
малянного хозяйства машинного зала на отметке 310 со стороны верхнего
бьефа.

62. Тюленев В.Н., слесарь — обнаружен на площадке турбинно-
малянного хозяйства машинного зала на отметке 310 со стороны верхнего
бьефа.

63. Тюленев Н.М., слесарь — обнаружен в помещении гидроагрегатов
на отметке 310.
64. Татарников А.И., слесарь – обнаружен на площадке турбинно-малярного хозяйства верхнего бьефа машинного зала на отметке 310.

65. Тетерин В.П., слесарь – обнаружен около грузового и пассажирского лифта в машинном зале на отметке между 315 и 320.

66. Чистяков А.Д., слесарь – обнаружен в помещении гидроагрегатов с 6 по 10 на отметке 310.

67. Уроякова А.В., маляр – обнаружена в районе ГА-1 на отметке 305,25 на лестничном проеме.

68. Шкаева Т.П., уборщик – обнаружена на отметке 320 машинного зала в районе механической мастерской и турбинного зала.

69. Щин Р.Н., электрослесарь – обнаружен до прибытия следственной группы на начальном этапе поисково-спасательных работ.

70. Юрьев С.В., слесарь – обнаружен около грузового и пассажирского лифта в машинном зале на отметке между 315 и 320.

71. Рай М.В., маляр – обнаружена в нижнем бьефе со стороны здания ГЭС.

72. Жолоб М.Н., мастер.

ООО «Технострой»:

73. Богатый Е.А., плотник-бетонщик – обнаружен до прибытия следственной группы на начальном этапе поисково-спасательных работ.

74. Бажин А.А., плотник-бетонщик – обнаружен около ГА-10.

ООО «СаянСервис».

75. Иконникова Т.И., уборщик – обнаружена около грузового и пассажирского лифта в машинном зале на отметке между 315 и 320.
6. Рекомендации и мероприятия по предупреждению подобных техногенных катастроф (аварий).

Руководителями ОАО «РусГидро», ОАО «Ленингидропроект» и ОАО «Системный оператор Единой энергетической системы», ОАО «Силовые машины» ОАО «ФСК» в установленные сроки выполнить следующие мероприятия:

6.1 По проектированию.

- гидроагрегата:

6.1.1. Организовать на действующих ГЭС обследования (при необходимости натурные испытания гидроагрегатов) с привлечением специализированных научно-исследовательских организаций, заводов-изготовителей, экспертных организаций.

Срок исполнения – 01.01.2011.

6.1.2. Для СШГЭС разработать гидроагрегат (турбину) с широким регулировочным диапазоном активной мощности с целью обеспечения участия станции в регулировании нагрузки в Единой энергетической системе.

Срок исполнения – 01.01.2011.

6.1.3. Выполнить доработку колонки электрогидравлического регулятора (ЭГР) турбины, предусмотрев закрытие направляющего аппарата при потере электропитания.

Срок исполнения – до пуска первого гидроагрегата.
6.1.4. Выполнить проверку с диагностированием методами неразрушающего контроля деталей фланцевого соединения и шпилек крепления крышек турбин по согласованию с заводом изготовителем.

Срок исполнения – до пуска первого гидроагрегата.

6.1.5. Оснастить гидроагрегаты штатными системами постоянного контроля вибрации и теплового контроля. Определить места установки датчиков и уставки предупредительной и аварийной сигнализации и обеспечить учет данных вибрационного и теплового контроля гидроагрегатов в системе группового регулирования с реализацией функции предупредительной и аварийной сигнализации, автоматического останова гидроагрегатов.

Срок исполнения – до пуска первого гидроагрегата.

- здания ГЭС и плотины:

6.1.6. Обеспечить защиту от затопления систем управления, связи, защит, расположенных на отметке машинного зала и ниже, а также в административных зданиях и служебно-технологических корпусах СШГЭС их автономное электроснабжение. Выполнить их в пылевлагозащищенном исполнении.

Срок исполнения – до пуска первого гидроагрегата.

6.1.7. Обеспечить системы видеонаблюдения и беспроводной связи в технологических помещениях машзала, на площадке трансформаторов, ОРУ-500, а также организацию связи, вывод информации на ЦПУ с резервным архивированием.

Срок исполнения – до пуска гидроагрегата.
6.1.8. Исключить размещение административных, бытовых и ремонтных помещений на отметках ниже уровня нижнего бьефа.

6.1.9. Установить на гребне плотины автономные источники питания с автоматическим запуском для электроснабжения кранов верхнего бьефа, механизмов управления затворами станционной и водосливной части, а также других механизмов, обеспечивающих безопасность гидротехнического сооружения.
Срок исполнения – до пуска первого гидроагрегата.

- системы противоаварийных защит:

6.1.10. Изменить проектные решения, заложенные в АСУ ТП, в части управления турбинами, условиями защит и блокировок для обеспечения безопасного и надежного отключения оборудования при возникновении нештатных ситуаций.
Срок исполнения – до пуска первого гидроагрегата.

6.1.11. Выполнить схему управления аварийными затворами турбинных водоводов СШГЭС, обеспечивающую их гарантированное закрытие при возникновении нештатных ситуаций, а также по команде с ключа управления на центральном пульте управления (ЦПУ) СШГЭС.
Срок исполнения – до пуска первого гидроагрегата.

6.1.12. Разработать проект системы мониторинга режимов работы и состояния гидроагрегата с фиксацией и сохранением параметров.
Срок исполнения – до 01.03.2010.
6.1.13. Утвердить регламент принятия управленческих решений (на СШГЭС) по данным вибрационного контроля Срок исполнения – до 01.01.2011.

6.2 Рекомендации по эксплуатации ГЭС.
- гидроагрегаты:

6.2.1. Согласовать с заводом изготовителем алгоритм группового регулирования мощности и установки приоритетов нагрузки гидроагрегатов с учетом их технического состояния.

Срок исполнения – до 01.06.2010.

6.2.2. Разработать и внедрить технические решения, исключающие самопроизвольное раскручивание гаек узлов крепления фланцевых соединений водопроводящего тракта.

Срок исполнения – до пуска первого гидроагрегата.

6.2.3. С учетом эксплуатационных ограничений и особенностей исключить участие гидроагрегатов с турбинами РО-230/833-В-677 во вторичном регулировании активной мощности и частоты.

Срок исполнения – до пуска первого агрегата.

6.2.4. При установке новых гидроагрегатов учесть их конструктивные и эксплуатационные особенности при участии ГЭС во вторичном регулировании активной мощности и регулировании напряжения (согласовывать данные решения с Минэнерго России).

Срок исполнения – до 01.01.2011.
- турбинные водоводы:

6.2.5. Провести диагностирование технического состояния сталежелезобетонных напорных водоводов. Устранить раскрытие поверхностных трещин.

Срок исполнения – до 01.01.2011.

6.3. Рекомендации по разработке новых регламентных документов.

6.3.1. Внести корректировки в инструкции по эксплуатации, охране труда, должностные инструкции, инструкции по действиям в чрезвычайных ситуациях в филиале ОАО «РусГидро» СШГЭС.

Срок исполнения – до пуска первого гидроагрегата.

6.3.2. Разработать методику по замене, затяжке, контролю и испытаниям узлов креплений фланцевых соединений водоподводящего тракта.

Срок исполнения – до пуска первого гидроагрегата.

6.3.3. Обратиться с предложениями в Минэнерго России об ускорении выпуска новой редакции «Норм технологического проектирования гидроэлектростанций» и внесении изменений в «Правила технической эксплуатации электрических станций и сетей».

6.3.4. Обратиться с предложениями в Минэнерго России о разработке нормативно-правового акта устанавливающего требования по организации не менее двух независимых цифровых высокоскоростных каналов информационного обмена между объектами электроэнергетики и диспетчерскими центрами.
6.4. Мероприятия по безопасной эксплуатации гидротехнических сооружений Саяно-Шушенской ГЭС в осенне-зимний период

Руководителю ОАО «РусГидро» и директору филиала ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего» в установленные сроки выполнить следующие мероприятия:

6.4.1. Эксплуатацию Саяно-Шушенского и Майнского водохранилищ осуществлять в соответствии с режимами, установленными Енисейским БВУ Федерального агентства водных ресурсов.
Срок исполнения — до утверждения новых Правил использования водных ресурсов Саяно-Шушенского водохранилища.

6.4.2. Разработать проектные и технические мероприятия, обеспечивающие возможность безопасной эксплуатации станционной, водосливной части плотины и водобойного колодца Саяно-Шушенской ГЭС в зимних условиях с учетом ограничений режима сработки и наполнения Саяно-Шушенского водохранилища.
Срок исполнения — 01.01.2010.

6.4.3. Разработать и представить в Енисейское управление Ростехнадзора комплекс мероприятий, обеспечивающих безопасную эксплуатацию плотины и водобойного колодца Саяно-Шушенской ГЭС в условиях отсутствия пропуска расходов через гидроагрегаты в зимних условиях.
Срок исполнения — 01.10.2009.

6.4.4. Разработать и представить в Енисейское управление Ростехнадзора временные правила эксплуатации гидротехнических сооружений, предусматривая условия эксплуатации гидротехнических
сооружений в условиях попадания льда и шуги в водосливную часть плотины, обмерзания затворов и ограничения по их маневрированию, ограничения по пропускной способности водосброса в зимний период и другие мероприятия по безопасности гидротехнических сооружений.

Срок исполнения – 01.10.2009.

6.4.5. Провести комиссионное (преддекларационное) обследование гидротехнических сооружений Саяно-Шушенской ГЭС.

6.4.6. Разработать декларацию безопасности гидротехнических сооружений Саяно-Шушенской ГЭС в комплексе с безопасностью гидротехнических сооружений Майнского гидроузла и представить в Ростехнадзор все необходимые документы для рассмотрения, утверждения и получения разрешения на их эксплуатацию.

Срок исполнения – 01.11.2009.

6.4.7. С привлечением специализированной организации уточнить (переработать) критерии безопасности гидротехнических сооружений Саяно-Шушенской ГЭС.

Срок исполнения – 01.02.2010.

6.4.8. Произвести в соответствии с установленным порядком расчет вероятного вреда в случае аварии гидротехнических сооружений плотины Саяно-Шушенской ГЭС и представить его в Ростехнадзор для определения величины финансового обеспечения гражданской ответственности за вред, причиненный в результате аварии гидротехнических сооружений.

Срок исполнения – 01.01.2010.
6.4.9. Разработать и представить на рассмотрение и утверждение в Ростехнадзор декларацию безопасности гидротехнических сооружений берегового водосброса СШГЭС.
Срок исполнения — не позднее четырех месяцев до начала эксплуатации берегового водосброса.

6.4.10. В связи с изменившимися условиями эксплуатации гидротехнических сооружений СШГЭС в рамках проведения преддекларационного обследования гидротехнических сооружений сделать оценку исправности и достаточности контрольно-измерительной аппаратуры и, в случае необходимости, разработать мероприятия по установке дополнительной контрольно-измерительной аппаратуры.
Срок исполнения — 01.10.2009.

6.4.11. Организовать наблюдения за состоянием плит водобойного колодца по установленной в плитах контрольно-измерительной аппаратуре.
Срок исполнения — ежедневно.

6.4.12. Организовать инструментальные наблюдения за наклонами пера и осадками массивной части раздельного устоя водобойного колодца.
Срок исполнения — не реже двух раз в месяц.

6.4.13. Разработать План мероприятий при возникновении на гидротехнических сооружениях аварийных и чрезвычайных ситуаций, учитывая особенности эксплуатации энергообъекта СШГЭС после техногенной аварии.
Срок исполнения — 15.10.2009.
6.4.14. Получить в МЧС России заключение о готовности эксплуатирующей организации к локализации и ликвидации чрезвычайных ситуаций и защите населения и территорий в случае аварии гидротехнического сооружения.

6.5. Рекомендации по дополнительным мероприятиям.

6.5.1. ОАО «РусГидро» и директору филиала ОАО «РусГидро» - «Саяно-Шулукская ГЭС имени П.С. Непорожнего» обеспечить наличие выделенных каналов связи обеспечивающих бесперебойную (устойчивую) работу СШГЭС, с привязкой всех систем к единому источнику точного времени дающего стабильную и достоверную информацию на территории Российской Федерации.

Срок - до запуска гидроагрегатов.

6.5.2. ОАО «Системный оператор единой энергетической системы», разработать предложения в нормативно техническую документацию (НТД) по планированию и ведению режимов регулирования частоты и мощности, с учетом специфики, срока службы и фактического состояния используемого гидроэнергетического оборудования и внести их на рассмотрение в Министерство энергетики Российской Федерации.

Срок исполнения – 01.06.2010.

6.5.3. ОАО «Системный оператор единой энергетической системы», в рамках разработки мероприятий по перспективному развитию ЕС России предусмотреть в составе генерирующих мощностей наличие тепловой маневренной генерации в ОЭС Сибири.

Срок исполнения – постоянно.
6.5.4. ОАО «РусГидро» и ОАО «ФСК» в целях повышения надежности выдачи мощности выполнить комплексную реконструкцию и техническое перевооружение ОРУ-500 кВ СШГЭС с заменой воздушных включателей, маслонаполненных трансформаторов тока и напряжения 500 кВ главной электрической схемы на комплектное элегазовое оборудование 500 кВ (КРУЭ), исключив размещение его на плотине ГЭС.

Срок – по согласованным планам.

6.5.5. Предложить Минэнерго России направить настоящий Акт с рекомендациями всем организациям эксплуатирующим ГЭС в целях разработки компенсирующих мероприятий и повышения уровня безопасности с учетом результатов проведенного технического расследования.

6.6 Рекомендации по обеспечению безопасности энергосистемы Российской Федерации.

Считать целесообразным рассмотреть проект строительства достаточного количества и пропускной способности линий электропередач соединяющих регионы Урала и Сибири минуя Казахстан.
7. События (лица) предшествующие и способствующие возникновению аварии

Синюгин Вячеслав Юрьевич – Заместитель министра энергетики РФ (2001-2004 г.г. заместитель Председателя Правления РАО «ЕЭС России», 2005 – 2008 г.г. Генеральный директор, Председатель Правления ОАО «ГидроОГК»). Находясь на должности заместителя Председателя Правления РАО «ЕЭС России», осуществлял решения по выводу ремонтного персонала из штатного расписания ГЭС, не обеспечив внесение в договора ремонта и обслуживания требований о регулярном контроле технического состояния основного оборудования. Находясь на должности Генерального директора, Председателя Правления ОАО «ГидроОГК») не создал условий должной оценки реальному состоянию безопасности СШГЭС. Не принял действенных мер по разработке, финансированию и исполнению компенсирующих мероприятий по безопасной эксплуатации СШГЭС (в том числе не обеспечил выполнение решения по скорейшему строительству дополнительного водосброса на СШГЭС, не принял эффективных мер по замене рабочих колес на гидроагрегатах снижающих влияние «нерекомендованных зон» их эксплуатации, не обеспечил принятия программы по безопасной эксплуатации гидроагрегатов участвующих в регулировании мощности и в связи с этим имеющих повышенный износ.

эксплуатации оборудования и не обеспечивших на должном уровне безопасную эксплуатацию СШГЭС;

Стапиевский Валентин Анатольевич — Управляющий директор, руководитель дивизиона «Юг» ОАО «РусГидро», (1983-2006 г.г. главный инженер Саяно-Шушенской ГЭС). Зная о реальном состоянии эксплуатируемого на СШГЭС оборудования (в том числе гидроагрегатов) не создал условий для принятия действенных мер ОАО «РусГидро» по безопасной эксплуатации СШГЭС. Участвовал в выводе ремонтного персонала из штатного расписания, не обеспечив соблюдение требований о
регулярном контроле технического состояния основного оборудования СШГЭС;

8. Перечень лиц, несущих ответственность за предотвращение инцидентов и аварий на СШГЭС.

8.1. Неволько Николай Иванович.

Место работы – филиал ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего».

Должность – директор филиала.
Образование – высшее профессиональное.
Специальность – техника высоких напряжений.
Квалификация – инженер-электрик.
Возраст – 56 лет.
Стаж работы на последнем месте работы – 2 года 8 месяцев.
Данные об аттестации в Центральном аттестационной комиссии Ростехнадзора отсутствуют.

Исполняя должностные обязанности, не обеспечил:

- организацию и реализацию мероприятий по предотвращению угроз безопасности жизни и здоровья работников филиала в связи с выполнением ими своих функциональных обязанностей;

- эксплуатацию энергетического оборудования, зданий и сооружений в соответствии с действующими нормативными требованиями.

Имеются признаки нарушений:

- ст. 212 Трудового кодекса Российской Федерации;

- ст.14 Федерального закона от 21 декабря 1994 №68-ФЗ «О защите населения и территорий от чрезвычайных ситуаций природного и техногенного характера»;

- п.1 ст.9 Федерального закона от 21 июля 1997 №116-ФЗ «О промышленной безопасности»;
- ст.10 Федерального закона от 21 июля 1997 №116-ФЗ «О промышленной безопасности»;
- ст.9 Федерального закона от 21 июля 1997 №117-ФЗ «О безопасности гидротехнических сооружений»;

8.2. Митрофанов Андрей Николаевич.

Место работы – филиал ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего».

Должность – первый заместитель директора, главный инженер.
Образование – высшее профессиональное.
Специальность – электрические станции.
Квалификация – инженер-электрик.
Возраст – 58 лет.
Стаж работы на последнем месте работы – 3 года 9 месяцев.
Исполняющая должностные обязанности, не обеспечил
- надежную и бесперебойную работу оборудования и сооружений предприятия в строгом соответствии с «Правилами технической эксплуатации электрических станций и сетей Российской Федерации» путем организации технического обслуживания оборудования, в соответствии с нормативными документами и заводскими инструкциями, а также модернизации и реконструкции оборудования;
- организацию внедрения в производство новых технологий и оборудования, повышающих безопасность производства и улучшение условий труда;
- исполнение приказа ОАО «РусГидро» от 24.11.2008 № 752/13 и от 06.09.2006 № 141/3562.
Имеются признаки нарушений:
- ст. 212 Трудового кодекса Российской Федерации;
- п.1 ст.9 Федерального закона от 21 июля 1997 №116-ФЗ «О промышленной безопасности»;
- ст.9 Федерального закона от 21 июля 1997 №117-ФЗ «О безопасности гидротехнических сооружений»;
- п.1.1.7 Правил технической эксплуатации электрических станций и сетей Российской Федерации, утвержденных приказом Минэнерго России от 19.06.2003 № 229 (зарегистрирован в Минюсте России 20.06.2003 рег. № 4799);

«Положения о филиале Открытого акционерного общества «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего» (в редакции приказа №452 от 23.07.2008).

8.3. Шерварли Евгений Игоревич.
Место работы – филиал ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С.Непорожнего».

Должность – заместитель главного инженера по эксплуатации
Образование – высшее профессиональное.
Специальность – электрические станции.
Квалификация – инженер - электрик.
Возраст – 55 лет.
Стаж работы на последнем месте работы – 3 года 7 месяцев.
Исполняя должностные обязанности заместителя главного инженера по
эксплуатации, не обеспечил:

- надежную и бесперебойную работу закрепленного в рамках должностных обязанностей оборудования и систем ГЭС в строгом соответствии с «Правилами технической эксплуатации электрических станций и сетей Российской Федерации» путем организации технического обслуживания в соответствии с нормативными документами и заводскими инструкциями, а также модернизации и реконструкции оборудования.

- исполнение приказа ОАО «РусГидро» от 24.11.2008 № 752/13 и от 06.09.2006 № 141/3562.

Имеются признаки нарушений:
- ст. 214 Трудового кодекса Российской Федерации;
- п.2 ст.9 Федерального закона от 21 июля 1997 №116-ФЗ «О промышленной безопасности»;
- ст.9 Федерального закона от 21 июля 1997 №117-ФЗ «О безопасности гидroteхнических сооружений»;
- п.1.1.7 Правил технической эксплуатации электрических станций и сетей Российской Федерации, утвержденных приказом Минэнерго России от 19.06.2003 № 229 (зарегистрирован в Минюсте России 20.06.2003 рег. № 4799);

8.4. Никитенко Геннадий Иванович.
Место работы – филиал ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С.Непорожнего».
Должность – заместитель главного инженера по технической части.
Образование – высшее профессиональное.
Специальность – гидроэлектроэнергетика.
Квалификация – инженер-гидроэлектроэнергетик.
Возраст – 54 года.
Стаж работы на последнем месте работы – 2 года 5 месяцев.
Исполняя должностные обязанности, не обеспечил:
- надежную и бесперебойную работу оборудования и сооружений ГЭС в строгом соответствии с «Правилами технической эксплуатации электрических станций и сетей Российской Федерации» путем организации технического обслуживания оборудования, в соответствии с нормативными документами и заводскими инструкциями, а также модернизации и реконструкции оборудования;
- организацию внедрения в производство новых технологий и оборудования, повышающих безопасность производства и улучшение условий труда;
- исполнение приказа ОАО «РусГидро» от 24.11.2008 № 752/13 и от 06.09.2006 № 141/3562
Имеются признаки нарушений:
- ст. 214 Трудового кодекса Российской Федерации;
- п.2 ст.9 Федерального закона от 21 июля 1997 №116-ФЗ «О промышленной безопасности»;
- ст.9 Федерального закона от 21 июля 1997 №117-ФЗ «О безопасности гидротехнических сооружений»;
- п.1.1.7 Правил технической эксплуатации электрических станций и сетей Российской Федерации, утвержденных приказом Минэнерго России от 19.06.2003 № 229 (зарегистрирован в Минюсте России 20.06.2003 рег. № 4799);
- п.2.1 «Должностной инструкции заместителя главного инженера по технической части филиала «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего» (утверждена директором филиала ОАО «РусГидро» -
8.5. Матвиенко Александр Владимирович.
Место работы – филиал ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего».
Должность – начальник службы мониторинга оборудования
Образование – высшее профессиональное.
Специальность – электропривод и автоматизация промышленных предприятий.
Квалификация – инженер-электрик.
Возраст – 42 года.
Стаж работы на последнем месте работы – 2 месяца.
Исполняющая должность, не обеспечил:
- проведение обработки и анализа результатов измерений стационарной системы виброконтроля гидроагрегата и разработку рекомендаций по устранению выявленных отклонений от нормативных требований;
- выявление повреждений или предаварийного состояния оборудования и формирование предложений о привлечении проектных и научно-исследовательских организаций для консультаций по сложным вопросам оценки состояния оборудования;
- исполнение приказа ОАО «РусГидро» от 24.11.2008 № 752/13 и от 06.09.2006 № 141/3562.
Имеются признаки нарушений:
- ст. 214 Трудового кодекса Российской Федерации;
- п.2 ст.9 Федерального закона от 21 июля 1997 №116-ФЗ «О промышленной безопасности»;
- п.1.1.7 Правил технической эксплуатации электрических станций и сетей Российской Федерации, утвержденных приказом Минэнерго России от 19.06.2003 № 229 (зарегистрирован в Минюсте России 20.06.2003 рег. №
4799);
- п.3.2.1; п.3.2.2 «Положения о службе мониторинга оборудования» (утверждено директором филиала ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего» 01.06.2009).

8.6. Погоняйченко Игорь Юрьевич.

Место работы – филиал ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего».

Должность – начальник оперативной службы.
Образование – высшее профессиональное.
Специальность – электрические станции.
Квалификация – инженер-электрик.
Возраст – 49 лет.
Стаж работы на последнем месте работы – 8 лет 10 месяцев.
Данные об аттестации в территориальной аттестационной комиссии Ростехнадзора отсутствуют.

Исполняю должностные обязанности:
- не принял решение об изменении режима работы оборудования;
- не обеспечил исполнение приказа ОАО «РусГидро» от 24.11.2008 № 752/13 и от 06.09.2006 № 141/3562.

Имеются признаки нарушений:
- ст. 214 Трудового кодекса Российской Федерации;
- п.2 ст.9 Федерального закона от 21 июля 1997 №116-ФЗ «О промышленной безопасности»;
- п.1.1.7 Правил технической эксплуатации электрических станций и сетей Российской Федерации, утвержденных приказом Минэнерго России от 19.06.2003 № 229 (зарегистрирован в Минюсте России 20.06.2003 рег. № 4799);
- п.3.1.3; п.3.1.4 «Положения об оперативной службе» (утверждено
директором филиала ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего» 01.06.2009).

8.7. Пересторонин Александр Иванович.

Место работы – филиал ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего».

Должность – начальник производственно-технической службы.
Образование – высшее профессиональное.
Специальность – электрические станции.
Квалификация – инженер-электрик.
Возраст – 51 год.
Стаж работы на последнем месте работы – 2 месяца.
Данные об аттестации в территориальной аттестационной комиссии Ростехнадзора отсутствуют.

Исполняю должностные обязанности:
- не обеспечил оперативный персонал качественными эксплуатационными инструкциями и их своевременный пересмотр;
- не обеспечил проведение оценки и анализа состояния оборудования электростанции на основании мониторинга и диагностики;
- не обеспечил исполнение приказа ОАО «РусГидро» от 24.11.2008 № 752/13 и от 06.09.2006 № 141/3562.

Имеются признаки нарушений:
- ст. 214 Трудового кодекса Российской Федерации;
- п.2 ст.9 Федерального закона от 21 июля 1997 №116-ФЗ «О промышленной безопасности»;
- п.1.1.7 Правил технической эксплуатации электрических станций и сетей Российской Федерации, утвержденных приказом Минэнерго России от 19.06.2003 № 229 (зарегистрирован в Минюсте России 20.06.2003 рег. № 4799);
- п.3.1.2; п.3.1.3; п.3.2.2 «Положения о производственно-технической службе филиала ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего»» (утверждено директором филиала ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего» 01.06.2009).

8.8. Чуричков Николай Васильевич.

Место работы – филиал ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего».

Должность – начальник службы надежности и техники безопасности.

Образование – среднее профессиональное.

Специальность – электрические сети, станции и системы.

Квалификация – техник-электрик.

Возраст – 58 лет.

Стаж работы на последнем месте работы – 6 лет 8 месяцев.

Данные об аттестации в территориальной аттестационной комиссии Ростехнадзора отсутствуют.

Исполняла должностные обязанности, не обеспечил:

- контроль правильности соблюдения персоналом филиала режима работы оборудования в соответствии с «Правилами технической эксплуатации электрических станций и сетей Российской Федерации», действующими инструкциями, режимными картами и другими нормативно-техническими документами и принятие мер по устранению нарушений;

- контроль выполнения персоналом подрядчиков требований системы охраны труда, пожарной и промышленной безопасности;

- исполнение приказа ОАО «РусГидро» от 24.11.2008 № 752/13 и от 06.09.2006 № 141/3562.

Имеются признаки нарушений:

- ст. 214 Трудового кодекса Российской Федерации;

- п.2 ст.9 Федерального закона от 21 июля 1997 №116-ФЗ «О
промышленной безопасности»;
- п.1.1.5; п.1.5.6 «Правил технической эксплуатации электрических станций и сетей Российской Федерации»;
- п.3.4.17.3; п. 4.4.6 «Положения о службе надежности и технике безопасности филиала ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С.Непорожнего» 01.06.2009» (утверждено директором филиала ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С.Непорожнего» 01.06.2009).

8.9. Чупров Андрей Иванович.
Место работы – филиал ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С.Непорожнего».
Должность – начальник службы технологических систем управления.
Образование – высшее профессиональное.
Специальность – электрические станции.
Квалификация – инженер-электрик.
Возраст – 53 года.
Стаж работы на последнем месте работы – 3 месяца.
Данные об аттестации в территориальной аттестационной комиссии Ростехнадзора отсутствуют.
Исполняя должностные обязанности начальника службы технологических систем управления:
- не в полной мере обеспечил проведение регулярных осмотров и анализ состояния оборудования, учет случаев не правильной работы автоматики.
- не обеспечил проведение анализа показателей оборудования, закрепленного за подразделением;
- не обеспечил исполнение приказа ОАО «РусГидро» от 24.11.2008 № 752/13 и от 06.09.2006 № 141/3562;
Имеются признаки нарушений:
- ст. 214 Трудового кодекса Российской Федерации;
- п.2 ст.9 Федерального закона от 21 июля 1997 №116-ФЗ «О промышленной безопасности»;
- п.1.1.7 Правил технической эксплуатации электрических станций и сетей Российской Федерации, утвержденных приказом Минэнерго России от 19.06.2003 № 229 (зарегистрирован в Минюсте России 20.06.2003 рег. № 4799);
- п.3.2.1., п.3.2.2. «Положения о службе технологических систем управления» (утверждено директором ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С.Непорожнего» от 01.06.2009).

8.10. Чиглинец Михаил Иванович.
Место работы — филиал ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С. Непорожнего».
Должность — заместитель начальника службы экономической безопасности и режима, с 03.08.2009 по 21.08.2009 исполняющий обязанности начальника штаба ГО и ЧС службы экономической безопасности и режима (в соответствии с приказом директора филиала ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С.Непорожнего» № 166 к от 03.08.2009).
Образование — высшее профессиональное.
Специальность — автомобильная техника
Квалификация — инженер-механик.
Возраст — 41 год.
Стаж работы на последнем месте работы — 12 лет.
Стаж работы по исполняющей должности — 19 дней.
Исполняя должностные обязанности начальника штаба ГО и ЧС службы экономической безопасности и режима, в отсутствие директора филиала покинул на принадлежащем ему автомобиле территорию станции, не организовал развертывание и работу нештатных формирований в ходе
ликвидации последствий аварии. Вернулся на станцию около 10 часов 00 минут 17.08.2009.

Имеются признаки нарушений:
- ст. 214 Трудового кодекса Российской Федерации;
- п.2 ст.9 Федерального закона от 21 июля 1997 №116-ФЗ «О промышленной безопасности»;
- ст.9 Федерального закона от 21 июля 1997 №117-ФЗ «О безопасности гидротехнических сооружений»;
- ст.14 п. Д Федерального закона от 21 декабря 1994 № 68-ФЗ «О защите населения и территорий от чрезвычайных ситуаций природного и техногенного характера»;
- п. 2.2.6 «Должностной инструкции начальника штаба Го и ЧС» (утверждена директором филиал ОАО «РусГидро» - «Саяно-Шушенская ГЭС имени П.С.Непорожнего» от 01.06.2009).

8.11. Зубакин Василий Александрович.

Место работы: ОАО «РусГидро».

Должность - исполняющий обязанности Председателя Правления ОАО «РусГидро».

Образование - Омский политехнический институт, радиотехнический факультет (специальность "конструирование и производство радиоаппаратуры").

Аспирантура Московского института народного хозяйства имени Плеханова (кандидат экономических наук, «Управление организационным развитием производственно-хозяйственных комплексов»).

Возраст – 51 год.

Стаж работы на последнем месте работы – с 2006 года член Правления ОАО «ГидроОГК», с июня 2008 г. и.о. Председателя Правления ОАО «РусГидро».
Исполняя должностные обязанности, не обеспечил исполнение следующих пунктов приказа ОАО «РусГидро» от 25.07.2008 № 472 «О распределении задач и полномочий между руководителями ОАО «РусГидро»:

3.1.9. Организация защиты информации, обеспечение экономической и физической безопасности Общества, в том числе в случаях, установленных локальными нормативными документами (актами) Общества, физической безопасности работников Общества и ДЗО, организация системы предотвращения аварий и ликвидации последствий аварий и стихийных бедствий на объектах Общества и ДЗО;

3.1.49. Организация и контроль деятельности руководителей представительств, директоров филиалов и в случаях, предусмотренных отдельными приказами Председателя Правления, руководителей других обособленных подразделений Общества.

Имеются признаки нарушений:

- ст.14 Федерального закона от 21 декабря 1994 г. № 68-ФЗ «О защите населения и территорий от чрезвычайных ситуаций природного и техногенного характера»;
 - п.1 ст.9 Федерального закона от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов»;
 - ст.10 Федерального закона от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов»;
 - ст.9 Федерального закона от 21 июля 1997 г. № 117-ФЗ «О безопасности гидротехнических сооружений».
 - п.1.1.7 Правил технической эксплуатации электрических станций и сетей Российской Федерации, утвержденных приказом Минэнерго России от 19.06.2003 № 229 (зарегистрирован в Минюсте России 20.06.2003 рег. № 4799);
8.12. Богуш Борис Борисович.
Место работы – ОАО «РусГидро».
Должность – член Правления, Управляющий директор, руководитель бизнес-единицы «Производство» ОАО «РусГидро».
Образование – Тольяттинский политехнический институт.
Специальность – инженер-механик.
Квалификация – инженер.
Возраст – 57 лет.
Исполняя должностные обязанности, не обеспечил исполнение следующих пунктов приказа ОАО «РусГидро» от 25.07.2008 № 472 «О распределении задач и полномочий между руководителями ОАО «РусГидро»:
3.7.1. Разработка и реализация единой технической политики Общества (в том числе в части автоматизированных систем управления технологическим процессом, автоматизированных систем диспетчерско-технологического управления и связи), контроль соответствия производственных программ Общества и ДЗО технической политике;
3.7.3. Организация формирования, подготовки к утверждению и реализация сводных программ и проектов в части ремонта, технического перевооружения и реконструкции, НИР (испытаний, опытов, исследований), технического обслуживания и эксплуатации гидроэнергетических объектов;
3.7.4. Разработка программы ремонтов, НИР (испытания, опыты, исследования), технического обслуживания Общества и ДЗО;
3.7.5. Разработка Инвестиционной программы Общества и ДЗО в части, технического перевооружения и реконструкции ГЭС;

3.7.7. Контроль функционирования системы управления жизненным циклом основных производственных фондов Общества и ДЗО;

3.7.8. Организация прогнозирования состояния производственных активов и управление рисками, связанными с надежностью производственных активов;

3.7.9. Мониторинг и контроль исполнения сводных производственных программ и проектов в части эксплуатации, ремонта, технического перевооружения и реконструкции гидроэнергетических объектов и объектов новых ВИЭ Общества и ДЗО;

в части управления методологией управления жизненным циклом производственных активов:

3.7.10. Формирование и актуализация существующих стандартов управления жизненным циклом производственных активов действующих ГЭС;

3.7.11. Разработка, внедрение и поддержание в актуальном состоянии корпоративного инструментария управления жизненным циклом производственных активов действующих ГЭС;

в части организации эксплуатации гидроэнергетических объектов;

3.7.13 Организация технической, технологической, промышленной, противопожарной и экологической безопасности на гидроэнергетических объектах Общества и ДЗО (в т. ч. строящихся), в том числе путем получения соответствующих лицензий (разрешений, аккредитаций и т.п.) на осуществление деятельности или эксплуатацию соответствующих объектов, а также путем заключения соответствующих договоров (в том числе договоров водопользования);

3.7.14. Организация деятельности главных инженеров и оперативно-эксплуатационных подразделений на гидроэнергетических объектах
Общества и ДЗО. Управление эксплуатацией и режимами гидроэнергетических объектов Общества. Управление обеспечением эксплуатации ГЭС;

3.7.15. Организация разработки и реализации оптимальных режимов использования гидроресурсов и выработки электроэнергии (мощности), формирование информационного потока данных в части водно-энергетических;

3.7.18. Проведение технического аудита подрядных организаций и гидроэнергетических объектов Общества и ДЗО по соблюдению требований технической и экологической безопасности Общества и взаимодействие по данным вопросам с надзорными органами.

Имеются признаки нарушений:
- п.1 ст.9 Федерального закона от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов»;
- ст.10 Федерального закона от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов»;
- ст.9 Федерального закона от 21 июля 1997 г. № 117-ФЗ «О безопасности гидротехнических сооружений»;
- п.1.1.7 Правил технической эксплуатации электрических станций и сетей Российской Федерации, утвержденных приказом Минэнерго России от 19.06.2003 № 229 (зарегистрирован в Минюсте России 20.06.2003 рег. № 4799).

8.13. Юсупов Тимур Маратович.

Место работы – ОАО «РусГидро».

Должность – заместитель руководителя Бизнес-единицы «Производство» ОАО «РусГидро», директор по эксплуатации ОАО «РусГидро».

Образование – Московский энергетический институт.
Специальность — инженер-гидроэлектроэнергетик.
Квалификация — инженер.
Возраст — 48 лет.
Исполняя должностные обязанности, не обеспечил исполнение следующих пунктов приложения 6 приказа ОАО «РусГидро» - Должностная инструкция Директора по эксплуатации ОАО «РусГидро»):

3.2.2.3. Организация формирования единой технической политики в области эксплуатации основного и вспомогательного оборудования, зданий и сооружений, автоматики и систем регулирования электростанций;

3.2.2.4. Организация системы мониторинга и диагностики технического состояния производственных фондов и активов. Контроль достоверности данных;

3.2.2.8. Организация контроля соблюдения промышленной, пожарной, экологической безопасности и охраны труда на Филиалах).

Имеются признаки нарушений:
- п.1 ст.9 Федерального закона от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов»;
- ст.10 Федерального закона от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов»;
- ст.9 Федерального закона от 21 июля 1997 г. № 117-ФЗ «О безопасности гидротехнических сооружений»;
- п.1.1.7 Правил технической эксплуатации электрических станций и сетей Российской Федерации, утвержденных приказом Минэнерго России от 19.06.2003 № 229 (зарегистрирован в Минюсте России 20.06.2003 рег. № 4799)
8.14. Дорофеев Николай Павлович.

Место работы – ОАО «РусГидро».

Должность – начальник Департамента технической инспекции ОАО «РусГидро».

Образование – Московский энергетический институт.
Специальность – инженер - электрик.
Квалификация – инженер.
Возраст – 49 лет.

Исполняя должностные обязанности, не обеспечил исполнение следующих пунктов приложения 20 к приказу ОАО «РусГидро» от 31.12.2008 № 876:

2.1. Методическое и функциональное руководство подразделениями филиалов Общества, курирующих вопросы охраны труда, промышленной безопасности и экологии (Далее - Подразделения);

2.2. Координация и контроль организации и выполнения в филиалах Общества профилактической работы по минимизации производственных рисков и сохранения здоровья персонала;

2.3. Организация работы по охране труда в Исполнительном аппарате Общества;

2.4. Координация и контроль организации и функционирования системы управления промышленной и пожарной безопасностью в филиалах Общества;

2.5. Координация и контроль организации мероприятий по повышению надежной и безопасной эксплуатации оборудования гидроэлектростанций, предотвращению и ликвидации аварийных ситуаций;

3.1.1. Формирует политику Общества в части охраны труда и промышленной безопасности;

3.1.2. Разрабатывает и внедряет систему управления охраной труда и
промышленной безопасностью (далее – СУОТиПБ) и локальные стандарты (процедуры) СУОТиПБ в Обществе;

3.1.4. Согласовывает локальные нормативные документы (акты) филиалов, связанные с вопросами охраны труда, промышленной и пожарной безопасности;

3.1.8. Ведёт контроль расследования несчастных случаев, профессиональных заболеваний, технологических нарушений и пожаров с последующим анализом качества расследования и достаточности разработанных мероприятий;

3.1.11. Готовит проекты приказов, распоряжений, оперативных указаний и информационных писем, направленных на обеспечение требований охраны труда, пожарной и промышленной безопасности Общества,

3.1.13. Делает аналитический обзор аварийности по филиалам Общества, несчастных случаев с персоналом Общества и подрядных организаций за месяц и организует электронную рассылку в адрес директоров филиалов для информации, проработки и планирования предупредительных мероприятий;

3.1.17. Осуществляет оперативное и методическое руководство организацией работы по охране труда, промышленной безопасности;

3.1.20. Осуществляет внеплановые ревизии филиалов Общества с целью проверки уровня охраны труда, промышленной безопасности и эксплуатации оборудования;

3.1.23. Проводит регулярный анализ эффективности проведения мероприятий по обеспечению безопасной работы гидротехнических сооружений;

3.1.24. Осуществляет контроль за безопасной эксплуатацией опасных производственных объектов филиалов в части исполнения функций производственного контроля со стороны Департамента;
3.1.32. Проводит экспертизу сводных производственных программ на предмет наличия воздействий, необходимых для обеспечения надежности и безопасности функционирования гидротехнических сооружений, регламентированных требованиями и предписаниями контролирующих органов и результатами технического аудита;

3.1.37. Разрабатывает инструкции по охране труда для работников Исполнительного аппарата. Организует их своевременный пересмотр.

Имеются признаки нарушений:
- п.1 ст.9 Федерального закона от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов»;
- ст.10 Федерального закона от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов»;
- ст.9 Федерального закона от 21 июля 1997 г. № 117-ФЗ «О безопасности гидротехнических сооружений»;
- п.1.1.7 Правил технической эксплуатации электрических станций и сетей Российской Федерации, утвержденных приказом Минэнерго России от 19.06.2003 № 229 (зарегистрирован в Минюсте России 20.06.2003 рег. № 4799).

8.15. Хазиахметов Тимур Расимович.
Место работы – ОАО «РусГидро».
Должность – начальник Департамента эксплуатации и управления режимами ОАО «РусГидро».

Образование – Московский энергетический институт.
Специальность – инженер-теплоэнергетик.
Квалификация – инженер.
Возраст – 33 года.
Исполняя должностные обязанности, не обеспечил исполнение следующих
пунктов приложения 26 к приказу ОАО «РусГидро» от 31.12.2008 № 876:

2.1.4. Организация мониторинга ремонта и обслуживания объектов;

2.1.5. Организация работ по планированию текущих и перспективных мероприятий по воздействию на производственные активы.

3.1.1.2. Мониторинг изменений в нормативно-правовых и нормативно-технических документах, регламентирующих порядок эксплуатации оборудования и ГТС, управления режимами работы ГЭС/ГАЭС, использования водных ресурсов. Контроль соответствия внутренних нормативных документов требованиям законодательства и нормативным документам государственных регулирующих органов;

3.1.2. В рамках управления режимами работы ГЭС/ГАЭС:

3.1.2.3. Проведение анализа и расчетов гидроэнергетических режимов работы ГЭС/ГАЭС;

3.1.2.5. Анализ и обобщение результатов эксплуатации электростанций, выявление негативных тенденций и принятие мер по их устранению;

3.1.2.7. Осуществление периодического контроля и общего методического обеспечения работы оперативного и эксплуатационного персонала ГЭС/ГАЭС;

3.1.3.4. Контроль достижения установленных технико-экономических показателей ГЭС/ГАЭС. Анализ причин возникающих отклонений. Подготовка соответствующих решений по отклонениям;

3.1.4.1. Разработка инструкций и методических указаний по испытаниям оборудования ГЭС/ГАЭС;

3.1.4.2. Обобщение и анализ материалов обследования состояния гидротехнических сооружений ГЭС/ГАЭС, зданий и сооружений, обеспечение их безопасности и эффективности использования;

3.1.7.7. Контроль соблюдения стандартов административно-хозяйственного обеспечения ГЭС/ГАЭС).
Имеются признаки нарушений:
- п.1 ст.9 Федерального закона от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов»;
- ст.10 Федерального закона от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов»;
- ст.9 Федерального закона от 21 июля 1997 г. № 117-ФЗ «О безопасности гидротехнических сооружений»;
- п.1.1.7 Правил технической эксплуатации электрических станций и сетей Российской Федерации, утвержденных приказом Минэнерго России от 19.06.2003 № 229 (зарегистрирован в Минюсте России 20.06.2003 рег. № 4799).

8.16. Ключков Роман Викторович.
Место работы – ОАО «РусГидро».
Должность – начальник Департамента планирования ремонтов, технического перевооружения и реконструкции ОАО «РусГидро».
Образование – Московский энергетический институт.
Специальность – инженер-электрик.
Квалификация – инженер.
Возраст – 40 лет.
Исполняя должностные обязанности, не обеспечил исполнение следующих пунктов приложения 15 к приказу ОАО «РусГидро» от 31.12.2008 № 876:
2.1.1. Управление состоянием оборудования, зданий и сооружений;
2.1.2. Формирование и контроль исполнения технической политики Общества;
2.1.3. Курирование крупных и приоритетных инвестиционных проектов в части технического перевооружения и реконструкции оборудования, зданий и сооружений;
2.1.6. Формирование системы стратегического управления
производственной деятельностью.

3.1.1.1. Формирование стандартов оценки состояния оборудования, зданий, сооружений;

3.1.1.2. Организация процесса сбора информации о значениях параметров состояния и анализа состояния оборудования, зданий, сооружений;

3.1.1.3. Организация анализа состояния оборудования, зданий, сооружений и связанных с ними рисков;

В рамках формирования и контроля исполнения Технической политики общества:

3.1.2.2. Анализ реализации Технической политики и выявление необходимых изменений;

3.1.2.3. Анализ существующих и перспективных технологий и выявление перспективных направлений технического развития производственных активов, зданий и сооружений, организация внесения изменений в Техническую политику и доведение до участников процессов производственной деятельности;

3.1.3.1. Контроль хода планирования, реализации, ввода в эксплуатацию (техническое курирование) крупных и приоритетных инвестиционных проектов технического перевооружения и реконструкции оборудования, зданий и сооружений Общества;

3.1.3.3. Согласование технических решений при осуществлении нового строительства, технического перевооружения и реконструкции оборудования, зданий, сооружений на предмет соответствия требованиям нормативных документов Компании;

3.1.4.1. Формирование стандартов, методик, инструкций принятия технико-экономических решений по воздействиям на оборудование, здания, сооружения;

3.1.4.4. Организация взаимодействия с Бизнес-единицей
«Инжиниринг» в части формирования заказа по инновационной деятельности, анализу состояния оборудования, зданий, сооружений;

3.1.5.3. Формирование и развитие методологии оценки финансовой реализуемости инвестиционных проектов в части технического перевооружения и реконструкции.

Имеются признаки нарушений:
- п.1 ст.9 Федерального закона от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов»;
- ст.10 Федерального закона от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов»;
- ст.9 Федерального закона от 21 июля 1997 г. № 117-ФЗ «О безопасности гидротехнических сооружений».

8.17. Толошинов Александр Валентинович

Место работы - Член Правления ОАО «РусГидро», Управляющий директор, Руководитель дивизиона "Сибирь" (2002-2006 г. генеральный директор ОАО «Саяно-Шушенская ГЭС им. П.С.Непорожнего»).

Образование — высшее профессиональное. Гидротехнический факультет Ленинградского политехнического института

Квалификация — инженер-строитель - гидротехник.

Возраст - 52 года.

Работая генеральным директором ОАО «Саяно-Шушенская ГЭС им. П.С.Непорожнего»:

- принял участие в реализации решений по выводу ремонтного персонала из штатного расписания предприятия, не обеспечив соблюдение требований о регулярном контроле технического состояния основного оборудования СШГЭС;
- зная о реальном состоянии эксплуатируемого на СШГЭС оборудования (в том числе гидроагрегатов) не создал условий для принятия действенных мер ОАО «РусГидро» по безопасной эксплуатации СШГЭС.

Имеются признаки нарушений:
- ст.14 Федерального закона от 21 декабря 1994 №68-ФЗ «О защите населения и территорий от чрезвычайных ситуаций природного и техногенного характера»;
- п.1 ст.9 Федерального закона от 21 июля 1997 №116-ФЗ «О промышленной безопасности»;
- ст.10 Федерального закона от 21 июля 1997 №116-ФЗ «О промышленной безопасности»;
- ст.9 Федерального закона от 21 июля 1997 №117-ФЗ «О безопасности гидротехнических сооружений»;

8.18. Коновалов Анатолий Николаевич.
Место работы – Федеральная служба по экологическому технологическому и атомному надзору.
Должность – Заместитель руководителя МТУ Ростехнадзора по Сибирскому федеральному округу (на 04.07.2008г.).
Образование – высшее профессиональное, Новосибирский электротехнический институт
Специальность – электрические системы
Квалификация – инженер-электрик
Возраст – 56
Стаж работы в Ростехнадзоре – 3 года.

Исполняя должностные обязанности и выполняя функции председателя комиссии (приказ №-354 от 10.06.2008г. с дополнением приказа №-374 от
20.06.2008г. МТУ Ростехнадзора по СФИ) по плановой комплексной проверке выполнения требований законодательства по промышленной и экологической безопасности, организации работы с персоналом, организации эксплуатации, технического состояния производственных объектов, соблюдения требований техники безопасности при эксплуатации энергоустановок филиала ОАО «Федеральная гидрогенерирующая компания» - «Саяно – Шушенская ГЭС имени П.С.Непорожнего», не обеспечил надлежащее изучение состояния дел на СШГЭС, организационно-технические причины регулярных ремонтов оборудования и общего технического состояния влияющего на безопасность эксплуатации опасных производственных объектов зарегистрированных на СШГЭС.

Имеются признаки нарушений:

- Федерального закона от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов»;

- Федерального закона от 21 июля 1997 г. № 117-ФЗ «О безопасности гидротехнических сооружений»;

8.19. Баклицкий Леонид Владимирович

Место работы – Федеральная служба по экологическому технологическому и атомному надзору.

Должность – Руководитель МТУ Ростехнадзора по Сибирскому федеральному округу (на 04.07.2008г.).

Образование – высшее военное, Красноярское радиотехническое училище противовоздушной обороны, Военно-командная академия ПВО

Специальность – радиотехнические, радиолокационные устройства

Возраст – 56
Стаж работы в Ростехнадзоре – 3 года.

Баклицкий Л.В., являясь руководителем Межрегионального территориального управления технологического и экологического надзора Федеральной службы по технологическому, технологическому и атомному надзору по Сибирскому федеральному округу, подписал приказ от 10.06.2008 г. № 354пр «О проведении мероприятия по контролю (проверки) с внесением дополнений приказом от 10.06.2008 г. № 374пр). На основании указанного приказа было проведено комплексное мероприятие по контролю (проверка) в отношении Филиала ОАО «ГидроОГК» «Саяно-Шушенская ГЭС имени П.С. Непорожнего».

В соответствии с п. 9 Положения о Межрегиональном территориальном управлении технологического и экологического надзора Федеральной службы по технологическому, технологическому и атомному надзору по Сибирскому федеральному округу, утвержденного приказом Ростехнадзора от 18 апреля 2006 г. № 344, руководитель межрегионального территориального управления несет персональную ответственность за выполнение возложенных на управление полномочий.

Таким образом, ответственность за ненадлежащее проведение проверки в отношении Филиала ОАО «ГидроОГК» «Саяно-Шушенская ГЭС имени П.С. Непорожнего» ложится на Баклицкого Л.В. как руководителя межрегионального территориального управления Ростехнадзора.

9.Экономический ущерб от аварии на 25.09.2009г.
(указанный в разделе ущерб является предварительным и представлен в комиссию заинтересованными организациями).
экономический ущерб по данным СПГЭС составил:

Потери, связанные с повреждением основных производственных фондов, по предварительным подсчетам составляют около 7 млрд. руб. (в том числе, частично повреждено здание ГЭС, трансформаторы силовые ОРНЦ- 533000/500-74У1 3 – Ф. T1, генераторы синхронные СФВ – 1285/275-42УХЛ4, гидравлические турбины вертикальные РО – 230/833-13-677, ограничители перенапряжения ОПН-500 и др.)

Затраты на локализацию, ликвидацию причин аварии по состоянию на 05.09.2009 составляют 192,51 млн. руб., из них (письмо РусГидро №102/1998 от 07.09.2009 г.):
- Материалы, запчасти, оборудование - 42,76 млн. руб.;
- Транспортные услуги (включая авиарейсы) - 44,68 млн. руб.;
- Сбор нефтесодержащих отходов - 70,10 млн. руб.;
- Прочие услуги - 25,83 млн. руб.;
- Прочие расходы - 9,13 млн. руб.;

Затраты МЧС России, связанные с проведением неотложных аварийно-спасательных работ по ликвидации последствий аварии составили 83,2 млн. руб. (письмо №43-3503-8 от 17.09.2009).

Экологический ущерб - ориентировочно 63,1336 млн. руб. (по данным Росприроднадзора по Республике Хакасия), исчисление принесенного вреда осуществлялось на основании приказа Минприроды России от 13 апреля 2009 г. № 87.

Недоотпуск электроэнергии за 2009 г.=8897,99 млн. кВт. час.

Недовыработка электроэнергии за 2009 г.=8950 млн. кВт. час.

Окончательный ущерб может быть уточнен по итогам выполненных восстановительных работ, возмещения ущерба третьим лицам и другим обоснованным основаниям.
Визовый блок
Комиссия по расследованию причин аварий в филиале ОАО «РусГидро»
Саяно-Шушенская ГЭС им. П.С.Непорожнего назначена приказами Ростехнадзора от 17.08.2009 г. № 718, от 09.09.2009 г. № 785, от 22.09.2009 г. № 811:

Председатель:

Кутынин Н.Г. руководитель Федеральной службы по экологическому, технологическому и атомному надзору.

Члены комиссии:

Слабиков Г.В. заместитель председателя комиссии - руководитель Северо-Западного управления Федеральной службы по экологическому, технологическому и атомному надзору;

Ильин В.М. заместитель руководителя Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;

Белобородов С.С. Председатель НП «Совет рынка»;

Бережков В.Б. заместитель начальника отдела энергетического надзора управления энергетического и строительного надзора Федеральной службы по экологическому, технологическому и атомному надзору;

Гордиенко В.М. заместитель начальника управления энергетического и строительного надзора Федеральной службы по экологическому, технологическому и атомному надзору;

Грецкий СВ. главный специалист государственного учреждения регионального отделения Фонда социального страхования РФ по Республике Хакасия;

Добрачев Н.М. заместитель руководителя Государственной инспекции труда - заместитель главного государственного инспектора труда (по охране труда) в Республике Хакасия;
Метелева Т.Г. заместитель председателя профкома филиала ОАО «РусГидро» - «Саяно-Шушенская ГЭС им. П.С. Непорожнего»;

Пронь В.А. заместитель директора Центра страхования энергетических рисков ОАО СК «РОСНО»;

Меркушев А.Г. начальник отдела Энергонадзора по Республике Хакасия Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;

Емелин В.М. главный государственный инспектор отдела по надзору за ГТС котлонадзору и Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;

Никиулин П.И. начальник отдела горного надзора по Республике Хакасия Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;

Оглезнев А.Ф. главный государственный инспектор отдела энергонадзора по Республике Хакасия Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;

Озерова Г.С. главный государственный инспектор отдела по котлонадзору и надзору за ГТС Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;

Подсыпанинова А.Н. государственный инспектор отдела по надзору за химическими и нефтеперерабатывающими предприятиями Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;

Литвиков В.И. заместитель начальника отдела Энергонадзора по Республике Хакасия Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;

Дмитриев Ю.М. помощник директора ВО «Безопасность»;
Ступин С.А. — заместитель руководителя Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;

Тихонов Е.Н. — главный государственный инспектор отдела технологического надзора по Республике Хакасия Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;

Федорченко А.П. — государственный инспектор отдела технологического надзора по Республике Хакасия Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;

Хазиахметов Р.М. — член правления ОАО «РусГидро», управляющий директор, руководитель Бизнес-единицы «Инжиниринг»;

Хыхкин А.В. — начальник отдела по надзору за гидротехническими сооружениями управления энергетического и строительного надзора Федеральной службы по экологическому, технологическому и атомному надзору;

Ходосевич А.В. — и.о. руководителя Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору;

Цапенко А.В. — заместитель начальника управления энергетического и строительного надзора Федеральной службы по экологическому, технологическому и атомному надзору;

Черединов Ю.А. — председатель профкома ОАО «Саяно-Шушенский Гидроэнергокомплекс»;

Яробычевский О.В. — заместитель начальника отдела Энергонадзора по Республике Хакасия Енисейского управления Федеральной службы по экологическому, технологическому и атомному надзору.
Петреня Ю.К. заместитель генерального директора – технический директор ОАО «Силовые машины».
Ферапонтов А.В. заместитель руководителя Федеральной службы по экологическому, технологическому и атомному надзору.